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Abstract: Today’s automobiles leverage powerful sen-
sors and embedded computers to optimize efficiency,
safety, and driver engagement. However the complexity
of possible inferences using in-car sensor data is not well
understood. While we do not know of attempts by auto-
motive manufacturers or makers of after-market compo-
nents (like insurance dongles) to violate privacy, a key
question we ask is: could they (or their collection and
later accidental leaks of data) violate a driver’s privacy?
In the present study, we experimentally investigate the
potential to identify individuals using sensor data snip-
pets of their natural driving behavior. More specifically
we record the in-vehicle sensor data on the controller-
area-network (CAN) of a typical modern vehicle (popu-
lar 2009 sedan) as each of 15 participants (a) performed
a series of maneuvers in an isolated parking lot, and (b)
drove the vehicle in traffic along a defined ~ 50 mile
loop through the Seattle metropolitan area. We then
split the data into training and testing sets, train an
ensemble of classifiers, and evaluate identification accu-
racy of test data queries by looking at the highest voted
candidate when considering all possible one-vs-one com-
parisons. Our results indicate that, at least among small
sets, drivers are indeed distinguishable using only in-
car sensors. In particular, we find that it is possible to
differentiate our 15 drivers with 100% accuracy when
training with all of the available sensors using 90% of
driving data from each person. Furthermore, it is pos-
sible to reach high identification rates using less than
8 minutes of training data. When more training data
is available it is possible to reach very high identifica-
tion using only a single sensor (e.g., the brake pedal).
As an extension, we also demonstrate the feasibility of
performing driver identification across multiple days of
data collection.

Keywords: Security and Privacy, Vehicle Sensors, Driver
Identification, Machine Learning

DOI 10.1515/popets-2015-0029
Received 2015-04-15; revised 2015-07-15; accepted 2015-07-15.

*Corresponding Author: Miro Enev: University of Wash-
ington, E-mail: miro@cs.washington.edu

Alex Takakuwa: University of Washington, E-mail: alex-
taka@cs.washington.edu

Karl Koscher: University of California, San Diego, E-mail:
supersat@cs.ucsd.edu

1 Introduction

Cars have evolved past their purely mechanical roots
into “smart” cyberphysical platforms built on sophisti-
cated sensing and computing systems which coordinate
to improve safety, efficiency, and engagement. More re-
cently, vehicles have also gained the ability to communi-
cate with car manufacturers, 3rd parties, and the road
infrastructure via mobile telecommunications which en-
ables two-way streaming of [sometimes pre-processed or
subsampled] data.

On one hand, computation, sensing, and connectiv-
ity technologies are unlocking new levels of innovation
in the automotive marketplace which aim to improve
the driving experience. On the other hand, these de-
velopments have been met with growing concern from
consumers and policy makers given the potential con-
flicts of interest over data ownership and privacy [4, 7).

While there has been significant effort spent on
maximizing the utility of the data streams generated
from connected cars, relatively little is known about
the privacy implications and potential for misuse. In
the current work, we aim to provide an experimental
grounding for the policy discussion necessary to advance
the balance between utility and privacy in vehicle data
sharing scenarios.

To this end, we investigate the potential to per-
form unintended privacy breaking inferences using data
collected from sensors in a typical car (2009 sedan).
The data we use as the basis for our experiments al-
ready exists on the car’s internal network, and as we
describe in Section 2, drivers are increasingly opting to
share/stream this data to 3rd parties (including insur-
ance companies and start-ups). While we expect that
most 3rd party collectors of vehicle data are trustwor-
thy, we seek to evaluate the potential for abuse of this
trust by measuring the potential to extract private in-
formation from the sensor data (note that even well in-
tentioned data collectors can expose individuals to risks
due to the possibility for subsequent breaches or sub-
poenas).

Tadayoshi Kohno: University of Washington, E-mail:
yoshi@cs.washington.edu

[®) ov-ne-np |



Experiments

We logged the data streams from 16 sensors that already
broadcast over the car’s internal computer network as
15 drivers (7 female, 8 male) navigated through (1) three
laps around a closed-course section composed of park-
ing and weaving maneuvers, and (2) ~ 50 miles of open
road driving. We collect the open road data along the
same pre-defined course and start each recording ses-
sion at the same time of day to normalize against traffic
conditions.

Using the open and closed road sensor recordings
as a database, we investigated the potential of identi-
fying the driver from snippets of query sensor data un-
seen in training (using a classifier ensemble with cross-
validation 90%-10% training-testing splits).

Goal

The goal of our experiments is to evaluate the accu-
racy when trained machine classifiers are asked to iden-
tify/fingerprint the driver from queries which vary in
both recording duration and the number of available
sensors streams. In Section 3 (Threat Model) we dis-
cuss scenarios for which driver fingerprinting could lead
to important privacy compromises. Note that we use the
terms “identification” and “fingerprinting” not to imply
uniqueness, but rather to imply a measure that would
allow reidentification of a driver among a set.

Results

Initially, we expected some differentiation to be possible

between drivers since various classes of human behaviors

have been shown to have between subject variability;
however, we were surprised to see that very high iden-
tification accuracy was possible among 15 people with
very short amounts of collected data and/or sensors.

Several highlights of our findings include:

100% driver ID among 15 drivers is possible using
15 sensors and the entire database of driving data.

— 100% driver ID among 15 drivers is possible using
just the brake pedal and the entire database for
training.

— 100% ID among 15 drivers is possible given short
training datasets (8 mins, 15 mins, 1 hour) and
multiple sensors; 87% accuracy is achievable using
a single sensor (brake pedal) and only the first 15
minutes of open-road driving as a training database.
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Implications

Our results suggest that vehicle sensor data has signifi-
cant potential for enabling powerful inferences—some of
which may be undesirable from the perspective of the
driver whose actions were captured in the data streams.
While we do not expect to diminish consumer appetite
for interactive, personalized, and connected experiences
in their vehicles we believe that our work sheds new light
on the potential privacy risks with computerized auto-
mobiles. Our work is specifically relevant to manufactur-
ers, drivers, and participating stakeholders in the exist-
ing marketplace which capture messages (sensor data)
sent over the car’s internal computer network while the
car is being driven. Lastly, we hope that our efforts can
help inform the design of policy and mechanisms to bal-
ance the utility and privacy tensions emerging in mod-
ern automotive contexts.

2 Background

During the first century following their invention, cars
were exclusively non-digital technologies. It was not un-
til the early 1980s, with the rise of microprocessors and
the introduction of the California Clean Air act that
electronic control units became widely integrated in the
fabric of the vehicle. Since then, the number of digital
components has grown dramatically with modern cars
typically containing on the order of hundreds of em-
bedded CPUs and sensors linked through sophisticated
internal networks.

Most recently, the data generated by the internal
networks of the vehicle is also being connected to remote
3rd parties. From a hardware perspective this connec-
tivity is accomplished either via built in telematics units
(2G/GSM, 3G, 4G, and LTE), via cellular connectivity
built into data collection devices (e.g., insurance don-
gles), via ‘carried in’ connection solutions which may
rely on a driver’s smart-phone for internet connectivity,
and in some instances OBD-II dongles can be removed
from the vehicle and connected to a computer or re-
turned to the provider.

The potential to monetize the vehicle’s sensor data
streams and the ubiquity of connectivity options have
been driving factors toward a novel data market for ve-
hicular data. Below we describe some of the participants
in the rapidly growing car data-sharing economy.



Usage Based Insurance

Many insurance companies offer “pay as you drive” dis-
counts which enable rate reductions for consistently
“safe” driving behavior (e.g., Progressive’s Snapshot,
State Farm’s In-Drive, Allstate’s Drive Wise, etc.). In-
terested drivers opt-in to installing a dongle attachment
to the OBD-II port which either locally analyzes sensor
data or transmits the data for upstream processing. The
features which insurances companies use to make rate
reduction judgments are not always public, but some
companies make aspects of their policy known — Pro-
gressive, for instance, claims that it considers bad be-
haviors to be instances of hard braking, driving between
midnight and 4am, and driving at high speed [10, 13].

Fleet Monitoring

Commercial fleet operators often install trackers in their
vehicles (OBD-II dongle connector with built in GPS
and telematics) which offer remote web-based report-
ing tools as well as customized triggers that send alerts
and notifications whenever drivers idle excessively, drive
over the speed limit, or stray beyond pre-defined geo-
graphical areas known as “geofences” [11].

Make Every Car Smart

Startups like Automatic and Zubie are promising to
turn any car into a “smart car” by beaming the data
from the vehicle’s internal network to the driver’s phone
(via OBD-II dongle and Bluetooth — ~100USD) where
it can be processed within an installed application.
Some example functions are remembering where you
parked, alerting your carpool/friends about your ar-
rival time, novice driver coaching/tracking, gamification
(break your fuel efficiency record for home commutes),
switching your phone to do-not-disturb mode, decipher-
ing diagnostic codes, and many more. A very compelling
aspect of these technologies is that they can make any
OBD-II equipped vehicle (manufactured after 1995) a
participant in the driver’s technology ecosystem and en-
able rich interactions with other smart devices and apps
(e.g., warm up home when leaving work [via Nest], log
my trips to a Google Spreadsheet, text my spouse for
item requests when I'm at the grocery store etc.) [2, 14].

The Car as a Mobile Operating System

Car manufacturers are also offering powerful integrated
infotainment and assistance systems that synthesize
sensor data and unlock powerful functions with telem-
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atics and remote connectivity (GM MyLink, Ford Sync,
Mercedes DriveStyle). In addition car manufactures are
partnering with phone manufactures to enable seam-
less interactions with existing mobile platforms. For in-
stance Apple’s CarPlay (expected to launch on 40 vehi-
cle brands in 2015) enables Apple phones to take over
the display panel interface and run a light version of
iOS which allows voice control (Siri) interactions with
the audio and audio-streaming services, messages, maps
and phone functions of their iPhone while locking the
driver out of more distracting functions. [1]

3 Threat Model

We consider a threat model in which the adversary has
access to information already being communicated on
the car’s internal computer network. In our model, an
adversary is thus a passive eavesdropper on the car’s
internal computer network. Although this seems to im-
ply that some malicious entity has access to the car,
we note that the number of 3rd party companies which
offer solutions based on analyzing vehicle OBD-II port
data is growing (e.g, Automatic.com, Mojo.io), and that
present /future systems could upload raw data to servers
where it could be compromised or abused. So although
we use the term “adversary,” we note that the entity
that we call the “adversary” may not be intentionally
malicious. For example, the “adversary” may be collect-
ing and storing information sent on the car’s internal
computer network for debugging or other purposes but,
because of a data breach or subpoena, later exposes that
data to a different party who does wish to use the data
to compromise the driver’s privacy. We take this per-
spective because we do not want to imply that existing
automotive manufacturers or after-market vendors are
being malicious, but—as we discuss below—we do note
that there may be incentives for them to try to finger-
print drivers.

3.1 Fingerprinting

We chose “driver fingerprinting” as the metric for pri-
vacy. We say that an adversary compromises a driver’s
privacy if he or she can—based on some informa-
tion collected on the car’s internal computer network—
fingerprint (or identify) the driver. Our use of the terms
“fingerprint” and “identify” are, however, distinct from
common English language uses of the terms. Rather,



like device or operating system fingerprinting, a driver
fingerprint is one that would allow an adversary to (for
example) re-identify a driver among a (possibly small)
set of other candidate drivers.

3.2 Data Sources

Our understanding is that existing components (e.g.,
after-market auto insurance dongles, built-in radios like
the telematics unit, or phone interconnected dashboards
like Apple’s CarPlay; see also Section 2) can access a
car’s internal computer network and read data for var-
ious purposes. Because the communications on a car’s
internal computer network are readily accessible to any
other component on that network, and because exist-
ing after-market and built-in components are already
reading those communications, we believe that it is rea-
sonable to assume that in the future more and more par-
ties will gain access to the car’s internal network com-
munications. Our goal is to understand whether, even
with the limited data already available on the car’s in-
ternal computer network, an adversary might be able to
compromise the driver’s privacy. For simplicity, in the
remainder of the threat model we assume a dongle is
reading the data, though there may be many other ways
to obtain data from the internal network, for example
through built-in or after-market components.

3.3 Scenarios

Our goal is to understand the potential privacy implica-
tions of making the data from a car’s internal computer
network available to a potential adversary. Thus, while
most of our work focuses on a technical study of the
topic, we do present several example scenarios in which
the capabilities that we explore could be used against a
car owner or another driver of a car.

—  Suppose a red-light camera captures a photo of a car
driving through a red light. Also suppose that the
driver’s face is obscured. The owner, Alice, says that
she was not driving the car but rather loaned it to
Bob. The car has an after-market insurance dongle
connected to the car’s internal computer network.
The police, perhaps in collaboration with the car
owner’s insurance company or via a subpoena, ob-
tain access to the data stored on that dongle (or
perhaps the data is uploaded to the cloud automat-
ically). Using that data, the police could obtain ev-
idence strongly indicative of the fact that Alice—not
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Bob—was driving the car at the time that the car
ran the red light.

— Suppose that Alice and Bob rent a car together, but
the rental agreement states that Alice is the only au-
thorized driver. She signs the agreement, and then
pulls out of the rental car parking lot and drives
for two hours. They stop for coffee and Bob decides
to drive. Using the techniques that we explore in
this paper, a dongle attached to the car could de-
tect (with high probability) that Alice is no longer
the driver.

— Suppose that Alice owns a car. Her car has an after-
market insurance dongle plugged into it. Her son,
Bob, just got his license. Alice chooses (or chose)
not to purchase the extra night time insurance cov-
erage for Bob, and hence Bob is only allowed to
drive during the day. But one night he does drive.
The insurance company dongle detects this and, as
a result, cancels Alice’s insurance.

—  Alice wants to know whether Bob’s significant other
is driving Bob’s car—something that Alice explicitly
disallowed. To detect this, Alice installs a monitor-
ing dongle in Bob’s car, and Alice gets a real-time
text message if that dongle detects a driver other
than Bob.

— Alice and Bob own a car with a dongle attached to
the car’s internal network. When the dongle detects
that Alice is driving, the dongle’s back-end service
sends Alice a text message with a targeted ad for
her favorite restaurant. The dongle does the same
thing to Bob when Bob is driving.

These scenarios, although hypothetical, suggest that
driver fingerprintability—even among small sets of
drivers—can raise privacy issues. We note that some may
argue that at least the first three scenarios may repre-
sent valid uses of the data already available on a car’s
internal computer network; others may argue that all
five scenarios demonstrate violations of privacy. The po-
tential for a debate over the first three scenarios suggest
that it is an important issue to discuss.® Understanding
the feasibility of driver fingerprinting, as we do in this
paper, will help inform that debate.

1 Similar debates have occurred around other technologies as
well, e.g., RFID toll both transponders [3].



3.4 Anecdotes

Anecdotally, we find that companies have, in the past,
already used or know that they could use the data
available on vehicles in ways that some might consider
privacy-violating. For example, Elon Musk (Tesla Mo-
tors CEO) recently used vehicle sensor data to dis-
pute the claims of a New York Times journalist about
the limited range of his car’s electric batteries (Musk
demonstrated that during a road test the NYT jour-
nalist took a detour and did not fully charge the vehi-
cle) [12]. Similarly, Ford sales executive Jim Farley was
quoted as saying: “We know everyone who breaks the
law. We know when you are doing it. We have GPS in
your car, so we know what you are doing.” [8]. These
anecdotes further suggest a need to better understand
the privacy implications of the increasing computeriza-
tion of modern automobiles; we explore that question in
this paper.

3.5 Limiting the Adversary

In our investigations we intentionally limit the adver-
sary to only passive eavesdropping on communications
already happening on the car’s internal computer net-
work. We make this limitation in order to ensure that
we are putting the adversary in a challenging position; if
the adversary can compromise privacy in this situation,
then it surely can also compromise privacy when given
even more data or capabilities. In some of our analy-
ses we even further limit the capability of an adversary
to only access data pertaining to specific components
in the car. We find that even such a limited adversary
can fingerprint drivers with high probability. Our results
suggest an inherent difficulty in preventing private infor-
mation flow to any party connected to the car’s internal
computer network, at least under the current design of
automobiles built on top of the standard automotive
network protocols.

4 Experimental Data Collection

Recall that the goal of our work is to experimentally
measure the degree of driver differentiation possible us-
ing the data generated from the existing sensors in the
vehicle. To this end, we collected data from the inter-
nal communication network (CAN bus) of a single car
which was driven by 15 volunteer participants in an iso-
lated parking lot as well as along a 50 mile open-road
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course. To minimize bias due to traffic conditions, we
performed the data collection during the same time of
day for each driver. To further normalize the driving
context, we requested that all drivers listen to the same
radio station (uptempo pop music).

4.1 Vehicle and Selected Sensors

The vehicle we used in our data collection was a a 2009-
edition modern sedan. In particular we connect to the
diagnostic port (OBD-II) and log the messages broad-
cast by various manufacturer installed electric control
units (ECUs) and sensors during driving behavior col-
lection.

As previously mentioned, there are many more
available sensor streams in our experimental vehicle
than the ones we choose to log. The motivation for our
sensor stream selection was to focus our analysis on the
control actions of the driver and the dynamic state of
the vehicle (without added knowledge of external sur-
roundings). The list of 16 sensors we record from is avail-
able in Table 1. These sensors are likely to be present
in many vehicles and provide a baseline from which to
measure information leakage in modern automotive con-
texts. Furthermore, we expect that the values produced
by the members of this sensor subset will be dependent
on driver behavior (as opposed to being exclusively cou-
pled to the behaviors of internal vehicle systems). Note
that the equipment we use to collect the data is passive,
and we are only intercepting broadcasts (i.e., we did not
modify any of the sensors).

4.2 Driver Recruitment

Prior to recruitment we first obtained approval from
the University of Washington’s Human Subjects Divi-
sion (IRB#: 44435 “Methodologies for Driver Behavior
Fingerprinting from Sensor Data Collected During Ve-
hicle Operation"). Subsequently, we recruited subjects
via public fliers and email lists which described the ex-
perimental setup and offered a $75 compensation fee
for an expected maximum study duration of 3.5 hours
(average duration was 3 hours).

From the pool of interested responders we selected
candidates which: (1) held a valid driver’s license, (2)
held a valid university ID (for insurance purposes), and
(3) had driven a vehicle in the past month. In addi-
tion to these inclusion criteria, we did our best to select
participants so as to achieve equal male and female rep-



resentation. Of our final set of 15 participants 8 were
males (average age 27.7), and 7 were females (average
age 32.5). The youngest participant in the study was 24
years old, and the eldest was 47.

4.3 Driving Data Setup

Next we helped subjects become familiar with the vehi-
cle and subsequently began the two part data collection
process. During data collection an experimenter was al-
ways present in the vehicle to record vehicle sensors (us-
ing a laptop computer), provide instructions, aid with
questions/concerns, and offer assistance in case of an
accident. The data for each driver was collected at the
same time of the day (familiarization and closed course
start at 12:30 PM PST, open road drive begins at 1pm
PST) to exclude the impact of special traffic situations
(e.g., rush-hour) on the driving style.

Furthermore, the results hold when the training
dataset is from the closed-course section and testing
data is from the open-road section (and vice-versa) sug-
gesting that the effects of context (traffic) do not dom-
inate the identification signature.

Vehicle Familiarization

Since we did not expect our volunteer drivers to be fa-
miliar with our car, we guided each of them through a
brief inspection and orientation process prior to the be-
ginning of the driving portion of the study. Participants
were instructed to familiarize themselves with all dash-
board indicators, controls (e.g., wipers, turn signals,
hazard lights, car horn), and subjects also had an op-
portunity to perform adjustments (seat, steering wheel,
rear-view mirrors). We note that none of these adjust-
ments (nor any interactions with actuators/sensors out-
side of our allowed list 1) were used in our data collec-
tion or for driver identification. We hypothesize that
the use of these sensors would only have made finger-
printing easier, however we did not use them because
we wanted to focus exclusively on actions connected to
driving behavior independent of the particular features
of the experimental vehicle’s interior.

1 While traffic conditions are an uncontrolled variable, and a
potential source of bias (e.g., heavy traffic vs light traffic) our
results hold when the training dataset is from the closed-course
section and testing data is from the open-road section (and vice-
versa) suggesting that the effects of context (traffic) do not dom-
inate the identification signatures.
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Driving Part 1 - Parking Lot Maneuvers

The closed course portion of the experiment was in-
tended to help us collect technical driving behavior
without the interference of other drivers and traffic con-
ditions. Subjects were asked to complete a series of
3 laps (the first lap was practice, laps two and three
logged in driving database) each of which consisted of
the following sequence of maneuvers: (1) parallel park,
(2) forward weave through 5 cones, (3) 3-point turn, (4)
reverse weave through 5 cones. All of the closed course
experiments were completed in a subsection of a parking
lot reserved for long term storage of work vehicles after
seeking permission from our University’s Fleet Services.

Driving Part 2 - Open-Road Loop

For the final part of the study participants were asked
to drive along a predefined interurban loop spanning
roughly 50 miles (~2 hours). The course was designed to
incorporate a diversity of road types including highway,
city, residential, and industrial driving segments.

5 Analysis Methods

Below we describe the sequence of steps for extracting
sensor values from the car’s internal network packets,
signal pre-processing, feature extraction, and running
queries of test data snippets against the trained set of
pairwise classifiers (multi-class classification).

5.1 Sensor Values from CAN data

As described in Section 2 sensor values are broadcast on
the vehicle’s control area network with periodic timings.
For the sensors in Table 1 we capture the raw hexadec-
imal payload, add a timestamp and extract the decimal
interpretation. In some instances, the raw values have
to be linearly transformed in order to adhere to the
expected range for each sensor; the transformation co-
efficients for addition/multiplication are available from
the manufacturer’s documentation.



Table 1. Sensors Included in Data Collection
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Sensor Control Mod- | Range Update Summary
ule Rate
Brake Pedal Position Brake 0 — 100% 15ms Degree to which driver is depressing the brake pedal.
Steering Wheel Angle Brake —2048 — 2048° 20ms Positive when steering wheel is rotated counterclockwise.
2

Lateral Acceleration Brake —32 — 32 j‘;i 25ms Measurement from an accelerometer, positive in left di-
rection.

Yaw Rate Brake —128 — 128 ‘izg 30ms Vehicle rotation around vertical axis, positive in left turn.

Gear Shift Lever Transmission 1-6 50ms An indication of the state of the transmission shift lever
position as selected by the driver.

Vehicle Speed Transmission 0— 317.46%&55 100ms Vehicle speed computed using the angular velocity of the
primary (high torque) axle.

Estimated Gear Transmission 1-6 60ms An estimate of the gear that the transmission has
achieved (will not change its value until a shift is com-
plete).

Shaft Angular Velocity Transmission 0 — 16383.8rpm 25ms Speed of the transmission output shaft; on front wheel
drive configurations this signal represents the average
speed of the front axles.

Accelerator Pedal Position | Engine 0-100% 20ms Degree to which driver is depressing the accelerator
pedal.

Engine Speed (RPMs) Engine 0 — 16383.8rpm 15ms High-resolution engine speed in revolutions per minute.

Driver Requested Torque Engine —848 — 1199Nm | 60ms Value is based on the acceleration and brake pedal char-
acteristics.

Maximum Engine Torque Engine —848 — 1199Nm | 125ms This signal is the calculated maximum torque that the
engine can provide under the current circumstances (al-
titude, temperature, etc.), based on wide-open throttle
conditions.

Fuel Consumption Rate Engine 0—102 l“;l% 125ms Instantaneous fuel consumption rate computed based on
the average over the last sample period (e.g., 100 ms).

Throttle Position Engine 0 —100% 30ms Zero represents the near closed bore position (idle, coast)
and 100% represents full available power.

Turn Signal N/A 2/1/0 N/A Off, left, or right turn signal.

List of sensors used in analysis. Note that ranges are based on sensor hardware and may not necessarily reflect the empirical levels

reachable during normal operation.

Table 2. Data Segment Details

Data Segment Avg. Duration | Distance | Details

Parking Lot 7.65 min 0.42 mi Parallel Park x2, Forward Weave x2, 3-point Turn x2, Reverse Weave x2

Open Drive Part 1 | 17.81 min 5.3 mi College Campus (1.4 mi), Interstate (3 mi), Downtown (0.9 mi)

Open Drive Part 2 | 135.27 min 44.8 mi Downtown (1.4 mi), Interstate (4.5 mi), Residential (7.5 mi),
Interstate(13.8 mi), Highway(7.1 mi), Shopping Mall (7 mi),
Residential(3 mi), College Campus(.5 mi)

All 160.73 min 50.52 mi | -

Each subject drove the vehicle through 3 segments (Parking Lot, Open Drive Part 1, and Open Road Part 2). Details about the road

types/manoeuvres, travel duration, and travel distance for each segment are provided above.
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Fig. 1. Data Collection: Drive Loop and Parking Lot Locations. The open-road section started and ended within the University of
Washington campus (yellow dot; reverse-clockwise traversal). The closed-course (parking lot) driving involved several laps in an en-
closed section of parking lot; each lap consisted of a sequence of maneuvers including parallel parking, forward and reverse weaving
through cones, and a 3-point turn.

Interstate Intersta
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Frequent Stops

Residential, —
Neighboorhoods
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Shopping
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Velocity

Residential,
Switchbacks

Fig. 2. Velocity data shown throughout the entire open road drive (excludes parking lot). Note the difference in velocity across the
different road segments; segments are shown highlighted with boxes of different colors (i.e., interstate = green, urban = pink).



5.2 Signal Pre-processing

Once the decimal values have been processed and lin-
early transformed within the expected ranges, we re-
sample each sensor to 60Hz by applying quadratic in-
terpolation and decimation as necessary depending on
the inherent sampling rate of each sensor.

After the data is uniformly sampled, we smooth
each sensor stream by applying wavelet denoising to re-
move high frequency artifacts. This operation involves
multi-level stationary wavelet decomposition and sub-
sequent reconstruction using the Haar wavelet (a.k.a.
Daubechies 1) with the default denoising threshold of
the MATLAB iswt command [6, 17].

5.2.1 Derived Sensors

We were interested in testing the potential for using
derived features in addition to the raw sensor readings
we could collect from the diagnostic port. To this end
we computed the derivative of acceleration (jerk) in the
forward and lateral directions. Jerk is a feature that has
been commonly used in the optimal control literature
[21] and we also anticipated that it may capture the
behavior of drivers that try to maximize smoothness.
To compute forward jerk we used the second derivative
of forward velocity, and lateral jerk was computed via
the derivative of lateral acceleration. In both instances
we applied an additional layer of smoothing to remove
high frequency artifacts from non-continuous sampling.

5.3 Sliding Windows

After pre-processing data from each sensor, we divided
it into overlapping sliding windows from which we ex-
tracted our features. The sliding window length (num-
ber of samples) and percentage of overlap with previous
and successive windows were free variables which we set
to default values and subsequently optimized in the Re-
sults section.

5.4 Features

The features we derive from the pre-processed signals
are intended to capture the statistical and morphologi-
cal characteristics of each sensor data stream. For each
sensor and time segment (sliding window) we end up
with 48 features which include :
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— Statistical features — minimum, maximum, aver-
age, quartiles, standard deviation, autocorrelation,
kurtosis, skewness

— Descriptive features — piece-wise average approx-
imation PAA (10 subdivisions)

— Frequency features — Fast Fourier Transform
(first ten Hz power components, average power in
10-20Hz, average power in 20-70Hz, and average
power of > 7T0Hz components). The compression of
higher frequencies and the emphasis of capturing
the raw values of lower frequencies was based on
the expected rate of actuation (i.e., highly unlikely
that drivers perform many actions at a rate higher
than 10 times per second). Also, we mention that
we resample at 60Hz, so any data over 30Hz is a
harmonic (Nyquist criterion).

5.5 Machine Learning and Multi-Class
Classification

The features computed from each sliding window com-
prise a single sample vector used in training or test-
ing of a machine classifier ensemble. Below we describe
the members of the classifier ensemble, the division of
training and testing samples, and the method used for
multi-class classification.

5.5.1 Training vs Testing Segmentation

Given a database of driving data (e.g., parking lot sensor
recordings) we train each classifier using the majority
of available data (90%) and test (perform queries with
unseen data) using the remaining subset (10%). We used
ten way cross-validation to ensure that each subset of
the database was used for both testing and training. We
also ensure that no overlapping sliding windows span
between the training and test set by removing samples
that are on the border of the 90%/10% split. In each
cross-validation slice we used the test data to compute
a scaling value that we applied to all data (both train
and test). The scaling is intended to reduce the influence
of outlier samples and is based on the following formula

Xraw — mean(Xraw)
std(Xraw) + €

Xscaled =

where epsilon is a very small positive value (1e~%) to
avoid division by zero.



5.5.2 Classifier ensemble

In our analysis we used the following four machine learn-

ing algorithms for binary classification.

— Support Vector Machine — radial basis function
kernel (sigma 1), interior-point method (quadratic
programming solver) (libsvm 3.1 package)

- Random 1000
(randomforest-matlab 4.5-29 package)

Forest — classifier  trees

— Naive Bayes — Kernel smoothing density estimate,
uniform prior (MATLAB NaiveBayes.fit)

— KNN, k-nearest neighbor — parameters: q = 9,
using euclidean distance metric with majority rule

tie break (MATLAB knnclassify)

5.6 Pairwise Comparisons - Qweighted

Since all of the classifiers we utilize are binary, and we
need to distinguish between many possible individual
drivers (N > 2) we need to be able to support multi-
class classification. The method we use to enable multi-
class classification is to train a set of pairwise classifiers
(one for each pair of subjects). This approach has been
shown to produce more accurate results than the one-
against-all approach for a wide variety of learning algo-
rithms because it (1) requires less training data, and (2)
enables training using less total memory [26].

6 Results

We began our analysis with an expectation that drivers
may intermittently exhibit unique behaviors but no in-
tuition about how this might translate into quantifiable
identification accuracy between the participants in our
database.

An initial proof of concept experiment found statis-
tically significant differences in the raw sensor data of
several subjects who self-reported differences in driving
style. Motivated by this result we applied our multi-class
machine learning query framework to a subset of our
database (parking lot) which yielded a promising start-
ing baseline for achievable accuracy. We subsequently
optimized the free parameters of our analysis workflow
and honed in to the best performing classifiers.

Once our framework was tuned, we found com-
pelling evidence that drivers are indeed distinguishable
from sensor data; furthermore we observe that not much
data and a few sensors are sufficient for identification.
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Table 3. Identification Accuracy

Sensor(s) Parking Lot | Drive Drive All Data
Partl Part2

Brake Pedal 50.00 87.33 100 100
Steer Angle 31.33 64.67 83.33 86.67
Accel. Pedal 15.33 18.00 30.00 31.33
Max Torque 75.33 60.67 100 91.33

Lat. Accel. 25.33 62.00 91.3 72.67
Top 3 Sensors 80.06 92.67 100 100
Top 5 Sensors 84.67 99.33 100 100

All Sensors 91.33 100 100 100

Driver identification accuracy matrix using various combinations
of sensor(s) and driving section(s). Top sensors are based on
ranking described in Section 6.3.

6.1 Parameter Optimization

To find the best settings for the two key parameters
(sub-window size, and overlap percentage) we did a
search in parameter space with all classifiers, sensors
and features using cross validation (90%, 10 splits%).
The sub-window sizes we checked ranged from 200 mil-
liseconds to 15 seconds? and the overlap percentages be-
tween successive windows were allowed to vary between
10-50%. No overlap was allowed between test and train-
ing windows.

While this was a time intensive process, it was also
worthwhile given its impact on performance. For our
database the best driver identification was achieved us-
ing 3 second windows with 25% overlap—91.33% accu-
racy. The runner up combination was 2 second windows
with 33% overlap—86.67% accuracy. The average accu-
racy across all tested combinations was 74.27%.

The significant boost in performance with tuned set-
tings highlights the importance of finding a window size
that spans the duration of driving events. Indeed one
important conclusion of our work is that the 3 second
envelope may be the optimal length for capturing sep-
arate driving [micro] events (especially when using a
sliding window approach to feature extraction).

2 Sub-window sizes checked [in seconds] include: .25 .5 .75 1 1.5
23510 15.



Top Sensors
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Fig. 3. Top sensors shown in sorted order of their ability to dif-
ferentiate between drivers (top 5 sensors are shown in red). The
brake pedal position is the most telling indicator of a driver's
style. The next most relevant sensor is the max engine torque.

6.2 Classifier Ensemble Pruning

Another interesting result of our efforts in optimization
was that the Random Forest classifier almost always
outperformed the other members of the ensemble (bet-
ter in 97.33% of test cases, tied for first in 99.13% of
evaluated instances).

We attribute the significant gap in performance be-
tween these classifiers to their unique mathematical ma-
chinery and specifically to each model’s ability to han-
dle large, redundant, and/or irrelevant sets of features.
While some classifiers were very sensitive to the training
features (support vector machines) the Random Forest
classifier did very well because it performs an internal
feature selection step.

Due to the dominant performance of the Random
Forest model in our subsequent analysis we do not re-
port results from the other members of the classifier
ensemble in favor of computational complexity as well
as for reporting simplicity.

6.3 Top Sensors and Features for Driver
ID

Given the optimized parameters and classifier model, we
wanted to find which sensors and features were most im-
portant for accurate identification. To this end we com-
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bined all available data (parking lot and both open-road
driving sections) and tested the identification accuracy
of each sensor individually using all available features
(Random Forest classifier). The results of this experi-
ment are shown in Figure 3 and one interesting conclu-
sion is that braking actions produce the most identifi-
able aspect of driving behavior in our database (via the
brake pedal position sensor).

Next we explored the importance of the individual
features in our feature set. This analysis follows the vari-
able importance method and again used the combined
dataset which included all sensors from all drives (park-
ing lot and both open-road driving sections). For each
individual feature (m) to be tested, we randomly per-
muted its value along branches of the Random Forest
and averaged the correct classifications using out-of-bag
error to determine the importance score for feature m.

Our hypothesis is that the sensor and feature rank-
ing results are likely to hold for other vehicles. While
the maximum achievable torque at every instant may
not be accessible from every vehicle, we believe that the
brake pedal and steering wheel will be among the top
sensors for driver identification because (1) they repre-
sent the most direct information about the actions of
the driver, and (2) seem to capture the most unique as-
pects of a driver’s strategy/execution. As for the feature
ranking, the top features seem to capture the range of
sensor values in the time windows of analysis (though
we expect the exact order of feature importance to be
very sensitive to differences in analysis methods). The
top 5 features were: min, std, max, range, 4th quartile.

6.4 Query Results vs. Course, Sensors

Next we computed the driver identification accuracy on
the various segments of our course (parking lot, vs drive
part 1, vs drive part 2) using different sets of sensors.

Table 3 shows the accuracy achievable in the various

combinations. Below we highlight some key results:

— Single Sensor — 87.33% accuracy can be reached
within the set of participants using a single sensor
(brake pedal) using the first part of the open-road
drive (~15 minute average duration), and 100% ac-
curacy is achieved using the brake sensor when the
second portion of the open-road drive (~1.5 hour
average duration).

— Parking Lot — 91.33% accuracy can be reached
within the set of participants using all available sen-
sors on the closed-road technical maneuvers in the
parking lot (~8 minutes average duration)



—  Driving Part 1 — 100.00% accuracy can be reached
within the set of participants using all available sen-
sors on the first open-road section (~15 minutes av-
erage duration) which includes urban and highway
segments

— Driving Part 2 - 100.00% accuracy can be reached
within the set of participants using all available sen-
sors on the second open-road section (~1.5 hours
average duration) which includes residential, city,
and highway segments

To summarize, our investigation shows that not much
time and not many sensors are needed to accurately
identify a driver in our database.

6.5 Extension: Fingerprint Stability

As an extension we also explored whether a single driver
could be consistently identified across multiple days of
data recording and differences in the course.

To this end we selected one driver and collected 5
round trips from the University to a nearby town (22
mile trip). Using this dataset as a query (and our origi-
nal dataset as training) we applied our analytic methods
to find that our test driver’s unique fingerprint was con-
sistent across multiple days and roads (91% accuracy,
same driver different roads and days of data collection).
The data in these fingerprint stability experiments used
all the sensors and the optimized parameters developed
in the work described in Section 6.1 above.

As validation, we also excluded this driver from the
training database (reduced to N=14) and attempted to
query with the new test data from the 5 round trips
(not included in the original database). This led to very
low confidence results (average of 6.53% gap in pairwise
comparisons between top candidate and runner up) ran-
domly distributed among the set of candidate drivers
(8.2% +/ — 4% probability of attribution to any of the
14 drivers in the database). These results suggest that
the fingerprinting method can be used to reliably inter-
pret whenever query data belongs to a driver not present
in the training database.

7 Related Work

To our knowledge, the two most similar prior works that
have also targeted driver identity inference from sensor
data were conducted by Miyajima et al. and Nishiwaki
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et al. in 2007 [23, 24]. Both of these efforts were com-
pleted by a similar set of authors and they differ in that
the Miyajima et al. citation refers to an article while
Nishiwaki et al. appears as a book chapter.

Miyajima et al. and Nishiwaki et al. [23, 24] devel-
oped an identification method based on frequency anal-
ysis (ceptstrum based) of sensor data collected from two
independent experiments; the first experiment used data
collected from a driving virtual simulator (86% identi-
fication accuracy among 11 subjects), and the second
experiment leveraged data previously collected from the
CAIR dataset (76.8% identification accuracy among 274
subjects). The CAIR dataset recorded multimedia data
such as audio, video and vehicle sensor information as
drivers responded to prompted dialogue questions; the
main objective of this dataset was to study the human-
machine speech interface during driving behavior [22].

While the driver identification results of Miyajima
et al. and Nishiwaki et al. are important, we note that
their driving datasets were based on either simulated
data, or collected with expensive/uncommon sensors
(i.e., laser range finders, video) in a highly instrumented
van with a large computer rack. Our work, focuses on
a stock sensors in a modern sedan, and focuses on nat-
ural driving behavior without introducing potentially
distracting tasks such as prompted dialogue.

Choi et al. also looked at performing inferences
about the driver using in-vehicle CAN bus information,
however the primary emphasis of the work was on mea-
suring driver attentiveness during normal driving and
driving with distractor tasks. The authors evaluated the
the potential to identify among 9 drivers and reached
31.45% accuracy using a hidden Markov model (HMM)
[16].

Two other related efforts which investigated the po-
tential to identify drivers in simulated virtual environ-
ments were performed by Zhang et al. and by Wakita
et al. [29, 31]. Wakita et al. reached 73% driver identifi-
cation among a set of 30 drivers which were instructed
to follow a guide vehicle. Zhang et al. collected simu-
lator data from 20 male subjects across multiple day
session (sessions were performed on the same route and
lasted approximately 30 minutes) and reached an iden-
tification accuracy level of 85% using HMMs. On one
hand, these simulated experiments enabled a controlled
setting which removed potentially confounding factors
present in real world driving (e.g., traffic variation).
On the other hand, the participants self reported that
the simulator did not capture the authentic experience—
specifically emphasizing that braking imitated real driv-
ing poorly. Unlike these efforts which attempt to mimic



biofidelity, our data comes from real driving scenarios;
furthermore, we try to balance for the lack of a con-
trolled environment by collecting data during a closed-
road (parking lot) session in which there are no external
factors to influence driver behavior.

Lastly, Van Ly et al. attempted to perform driver
identification distinguishing between two drivers using
sensor data collected from inertial sensors in a mobile
device [28]. This work initially shows that a mounted
phone sensor’s accelerometer is highly correlated with
acceleration and braking activity, and subsequently the
authors use the phone data to distinguish between the
two drivers along a diverse multi-hour course involv-
ing residential and highway segments (using a modern
sedan). Their results indicate that the highest achiev-
able performance using acceleration, braking, and turn
data using their dataset is roughly 60% using unsuper-
vised k-means and supervised SVM classifiers.

While past results indicate that driver identifica-
tion above chance levels may be possible it is not clear
to what degree this inference can be made from the in-
formation flowing through an unmodified vehicle. We
aim to address this gap and investigate the level of
driver identification possible using the sensor data in a
stock vehicle driven by 15 drivers along open and closed
courses. Unlike past work we do not use simulation data
nor mobile phones and the sensor streams we tap are
those pre-installed by the manufacturer without includ-
ing additional instrumentation (i.e., laser range finders).

8 Discussion

While we anticipated some level of de-anonymization
success, our results are surprising given the apparent po-
tential of vehicle sensor data present in stock vehicles to
distinguish between individuals given limited time and
restricted access to sensors. We view this as a significant
result since it implies that even simple devices — such as
insurance dongles attached to a car’s internal computer
network — have the potential to violate privacy. More-
over, we expect that future vehicles are likely to have
even richer sensor streams including video data and lo-
cation awareness, which only increase the potential for
privacy breaking attacks. However, we note that as more
functionality eventually becomes autonomous, the abil-
ity to fingerprint decreases; at the ultimate end of the
spectrum, with a fully autonomous vehicle, we imagine
that we could at most fingerprint the algorithm and not
the passenger.
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8.1 Scaling to Large N and Different
Vehicles

One natural question about our work is whether the
techniques we have presented will enable driver identi-
fication when applied to large sets of individuals. While
applying our techniques to only a few drivers can still
be a significant privacy concern, as noted in our threat
model section, we believe that it should be possible to
apply driver identification on very large scales. Specifi-
cally, we speculate that several ideas can be applied [to-
gether] to restrict the candidate pool of matching drivers
given a query sample of sensor data :

—  Clustering techniques (and other unsupervised
structural methods) can be used to limit the set
of candidate matches to a given query.

— If the rough geographic location of a car and driver
are known, it would be possible to further restrict
the search space.

— Access to longitudinal data should facilitate iden-
tification (i.e., given enough data everyone can be
distinguished).

One issue that we did not experimentally explore in
our work, is how a driver’s fingerprint transfers between
different vehicles and vehicle types. While we consider
this analysis out of scope for our study and core threat
model, we conjecture that drivers are likely to retain the
majority of their driving signature (strategy and execu-
tion patterns) independent of the vehicle in question.
An interesting direction for future research would be to
develop driver identification models that can adapt to
different vehicle dynamics/makes/models.

8.2 Towards Utility and Privacy Balance
in Vehicle Data

Given the diversity and scale of the automotive ecosys-
tem we believe that developing a balance between utility
and privacy in sensor data exchanges will require a com-
bination of legal and technical solutions. Policy debates
are already ushered on by consistent calls for increased
consumer privacy protections, however the diversity of
existing legal opinions highlights the complexity of cre-
ating regulatory frameworks in intelligent automotive
systems.

2 Further experimentation is necessary to validate or refute
these claims.



Technical methods have also been suggested to mit-
igate tensions, however matching the available solutions
to each deployment context is a difficult problem. Below
we touch on some of the interesting developments in the
legal and technical spheres which we consider relevant
to the future of utility and privacy in vehicle sensor data
exchanges.

8.2.1 Existing Legal Perspectives for Vehicle Data
Privacy

From a legal perspective there are varying stances on
vehicle sensor data ownership, processing, and manage-
ment. One of the central policy challenges is mitigat-
ing the risks of data reuse for unforeseen, and poten-
tially adversarial, purposes which raises significant pri-
vacy concerns. Within the United States, 13 states have
adopted the stance that a vehicle’s sensor data is private
and the property of the car owner [9], however within
these 13 states there are marked differences on what
constitutes acceptable data retrieval without owner con-
sent 3. Of course, if a driver may still authorize another
entity to access the vehicle’s sensor data, e.g., as part
of a contract.

8.2.2 Technical Defenses

From a technical perspective there are significant ef-
forts to develop de-anonymization tools which defend
individuals from privacy attacks. Typically these efforts
have focused on providing theoretical guarantees in lim-
ited contexts where information releases are managed
by a statistical database (or data vaults) capable of ob-
fuscating data or injecting noise to prevent the linkage
of data entries to specific persons [19, 27]. While these
approaches offer strong protections, their use cases are
somewhat constrained by the information request and
release mechanisms required to enforce privacy polices.
More aligned with the streaming nature of vehicle sen-
sor data, is the work towards privacy preserving trans-
formations of real-time streams (e.g., SensorSift [20])

3 Connecticut requires warrants [18], Oregon allows uncon-
sented disclosure to “facilitate medical research of the human
body’s reaction to motor vehicle crashes" or “to diagnose, ser-
vice, or repair a motor vehicle" [25], and Arkansas prohibits
insurance companies from access to the data in accidents to
prevent the insurer from assuming vehicle ownership [15].
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intended to remove sensitive aspects of the data while
allowing useful inferences to still extract utility from the
sifted data.

Another defensive technique specific to the driver
de-identification problem, would be to embed random
sensor signals (e.g., break pedal actuation) to the out-
put nodes of the CAN bus (e.g., OBD-II port). In this
way the vehicle state would not actually be interrupted
by signal injections (i.e., the break signals would not
be executed) but would be observed by any upstream
subscribers — hence introducing noise in the ability to
acquire a driver’s unique fingerprint.

Lastly, some automotive manufacturers are starting
to mediate access to CAN packets through gateways
which can limit the information observable at the OBD-
IT port [5, 30]. If this feature becomes more common
it would thwart methods that rely on data exfiltration
from the diagnostics port (though it may be possible to
gain access to sensor data using other trusted nodes on
the network).

9 Conclusion

Through our work we hope to inform stakeholders with
concrete results of information leakage (via privacy
braking inference) in a realistic vehicular context. Un-
like past work, our analysis focused only on stock sen-
sors in a typical vehicle (2009 sedan) that has not been
instrumented beyond what has been installed by the
manufacturer. As our results indicate, it is possible to
accurately identify drivers using limited amounts of sen-
sor data collected from a restricted set of sensors (e.g.,
87% accuracy in distinguishing between 15 drivers, us-
ing just the brake pedal position from 15 minutes of
open-road driving data [13.5 minutes training, 1.5 min-
utes test data], 99% accuracy is achievable when using
the top 5 sensors). Furthermore, an extension of our
work suggests that a driver’s fingerprint (driving strat-
egy and unique patterns of execution) are consistent
across different days and road types (see Section 6.5).

These results suggest that drivers should be wary of
sharing their vehicle data streams without substantial
guarantees for superior service. Similarly the consumers
and collectors of said data should have a responsibility
to offer users with privacy controls and develop safe-
guards for data processing and retention which keep up
with the evolving threat model landscape.
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Fig. 4. Sensor data during a segment of the downtown portion of the drive. Inner city traffic lights produce a predictable acceleration
and deceleration pattern evident in the velocity plot (blue curve), brake pedal (red curve) and accelerator pedal (green curve).
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Fig. 5. Sensor data along a winding section of residential roadway requires some technical driving. Note the high amount of steering
wheel activity required (black curve) and its close correlation with the lateral acceleration measurements (gray curve). One consistent
aspect of this driver’s behavior is the amount of braking (red curve) in the early part of turns and the subsequent accelerations (green
curve) during turn exits.
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Fig. 6. Diversity in style between three subjects S1,52, and S3; S1 and S2 are the most similar in the dataset, and S1 and S3 are the
most disimilar. While each participant is driving each sensor produces a time series. This time series is divided up into 3 second win-
dows, and 49 sub-features (e.g., min, max, std, mean, quartiles, fft, etc.) are computed. Each of the 3 seconds windows ends up being
a point on the graph (different colors for different subjects) after dimensionality reduction (in the form of Principal Component Analy-
sis) is applied to reduce the 49 sub-features onto the 1D principal component axis.
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Fig. 7. Sensors can be clustered into four groups: (1) acceleration - shown in blue [accelerator pedal, torque requested, etc.], (2) turn-
ing - shown in red [steering angle, lateral accel, etc.], (3) vehicle state - shown in green [velocity, gear, RPMs], (4) deceleration -
shown in purple [brake pedal, maximum achivable torque]
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