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Abstract
Modern automobiles are complex distributed systems in
which virtually all functionality — from acceleration and
braking to lighting and HVAC — is mediated by com-
puterized controllers. The interconnected nature of these
systems raises obvious security concerns and prior work
has demonstrated that a vulnerability in any single com-
ponent may provide the means to compromise the system
as a whole. Thus, the addition of new components, and
especially new components with external networking ca-
pability, creates risks that must be carefully considered.

In this paper we examine a popular aftermarket telem-
atics control unit (TCU) which connects to a vehicle via
the standard OBD-II port. We show that these devices
can be discovered, targeted, and compromised by a re-
mote attacker and we demonstrate that such a compro-
mise allows arbitrary remote control of the vehicle. This
problem is particularly challenging because, since this is
aftermarket equipment, it cannot be well addressed by
automobile manufacturers themselves.

1 Introduction

Telematic control units (TCU) are the embedded devices
that underlie the “connected car” concept. They intercon-
nect existing in-vehicle electronic control units (ECUs)
with outside systems to provide new services and fea-
tures. These TCUs can be divided into those sold and
integrated by the OEM itself (e.g., such as GM’s On-
Star, Ford’s Sync, etc.) and those that serve the aftermar-
ket (e.g., Progressive Snapshot’s, Automatic Lab’s Auto-
matic, Delphi’s Connect, etc.) In prior work we demon-
strated vulnerabilities in the former class of such devices,
showing that certain OEM provided TCUs allowed both
local and remote compromise and subsequent takeover
of virtually all automotive systems [1, 4]. More recently,
this result was duplicated by Miller and Valasek on the
Jeep Cherokee and its UConnect telematics system [3].
However, at least for our own research, working with

the associated manufacturers to fix those problems was
relatively straightforward. Since the TCUs were tightly
coupled into their vehicles, they could be updated during
scheduled vehicle service and mitigated through changes
in the OEM-operated service. In this paper we have
turned our attention to the thornier problem of aftermar-
ket devices, which are typically purchased directly by
consumers or through a third-party service offering (e.g.,
insurance or fleet management), are loosely coupled with
the vehicle in which they are installed, and are main-
tained independent of normal automotive service chan-
nels.

Most of such aftermarket devices take the form of
small “dongles” that interface with automotive systems
through the mandated On-Board Diagnostics port (OBD-
II in the US, EOBD in Europe, JOBD in Japan) typically
located under the driver’s side dashboard. A series of
standard protocols and schemas allow an OBD-II peer to
access an array of low-level sensor information about the
car’s operation (most of this is defined in SAE standards
J1979, J2012, and J2178). In addition, it is common that
the physical OBD-II port also provides access to the ve-
hicle’s internal networks (typically one or more CAN
buses) for monitoring additional, vehicle specific, infor-
mation. In spite of the fact that most aftermarket TCUs
are designed for monitoring only, CAN is a multi-master
bus and thus any device with a CAN transceiver is able
to send messages as well as receive. This presents a key
security problem since as we, and others, have shown,
transmit access to the CAN bus is frequently sufficient
to obtain arbitrary control over all key vehicular systems
(including throttle and brakes).

Further, it is common that these devices, in addition
to a microprocessor and a CAN transceiver, also pro-
vide a number of additional functionality including a
GPS, accelerometers and, critically, external networking
connectivity. This latter feature may be as simple as a
short-distance Bluetooth interface (e.g., as with Auto-
matic Lab’s dongle), but more commonly is a full cel-
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lular modem (2G or 3G) that provides remote data con-
nectivity via the Internet. Taken together, these pieces of
functionality place tremendous weight on the security of
aftermarket TCU software. Should such software be vul-
nerable to external compromise, this would allow an at-
tacker to control a wide array of vehicles at arbitrary dis-
tance.

In this paper, we explore this issue via a case study
of one such aftermarket TCU device. We show that the
device is vulnerable via a range of both local and remote
vectors. Moreover, post-compromise the device has com-
plete access to the vehicle’s CAN bus and is able to inject
arbitrary payloads to automotive ECUs and thus interac-
tively control vehicular systems at arbitrary distance.

In the remainder of this paper, we provide some of
the contextual and technical background for this prob-
lem, explain our threat model, and describe our experi-
mental methodology in identifying TCU vulnerabilities.
Then, in addition to describing our findings, we discuss
the clear set of security controls that would reduce the
ease with which our attacks succeeded.

2 Background

In this section, we briefly review the aftermarket TCU
ecosystem, describe the device we have studied, and
highlight key related work.

2.1 Aftermarket TCU ecosystem
Aftermarket TCUs are employed for a wide array of pur-
poses. For example, TCUs offered by Dash and Auto-
matic Labs provide a “smart driving assistant” that gives
input (via a connection with your smartphone) about how
to improve fuel efficiency, real-time stats about the car’s
performance (e.g., engine temperature) as well as auto-
matic crash reporting. Delphi’s Connect incorporates a
cellular modem and provides geo-fencing (e.g., for teen
drivers), remote engine start, trip tracking, and explain-
ing vehicle health (i.e., a “scan tool” for consumers).
Other such consumer-focused vendors including Zubie,
Fuse, Carvoyant, and Kiwi. A related market revolves
around consumer security and surveillance. For example,
Carlock sells devices focused on vehicle theft, Splitsecnd
on automatic crash reporting, and an array of vendors sell
tracking TCUs marketed to private investigators and sus-
picious partners. Variants of these are also marketed for
commercial fleet management purposes (to track the lo-
cation, driving habits, and vehicular health of large vehi-
cle fleets).

However, perhaps the most interesting sector experi-
menting with TCUs is automotive insurance. Several in-
surance carriers are using TCU analytics to offer “safe
driving” discounts (e.g., Progressive Snapshot), validated

low-mileage discounts (Travellers Intellidrive), or for of-
fering pay-per-mile insurance products (Metromile and
Allstate’s Drive Wise). This sector is particularly inter-
esting because the TCU device is supplied by the insur-
ance provider as a condition of the issued policy and,
due to their broad footprint, will connect millions of cus-
tomers.1 Moreover, while individual carriers frequently
write or specialize the presentation and management
software, it is common that the underlying hardware and
embedded software is provided by a smaller set of com-
mon OEM providers (e.g., Progressive’s Snapshot is a re-
branded version of the Xirgo XT-3000, Metromile’s ser-
vice is based on C4E dongles from Mobile Devices, etc.)

Most of these products are built around a small number
of embedded SoC solutions, typically using some form
of low-power ARM core, a sensor package (gyroscope,
accelerometers, GPIO), a GPS chip, and a cellular and/or
Bluetooth modem. They are typically able to draw power
directly from the OBD-II port (although some also in-
corporate rechargeable batteries) and incorporate a CAN
transceiver chip for sending and receiving signals in ac-
cordance with the CAN protocol.

2.2 Related work
Quite a bit of automotive security research has focused
on the limitations of the CAN bus. The CAN bus stan-
dard was designed by the auto industry to provide a way
for the various electronic control units (ECU) in an au-
tomobile to communicate. It forms a simple bus topol-
ogy network in which messages are tagged with identi-
fiers that are associated with particular ECUs or func-
tions (the layout of a sample CAN frame is shown in
Figure 1). However, there is no enforced addressing or
message source identification and thus any device on the
CAN network can send any message in a manner indis-
tinguishable to the target ECU.

In previous work, Koscher et al. [4] and Miller and
Valasek [6] have shown that this property allows triv-
ial replay attacks, activating a range of automotive func-
tions. Moreover, both groups showed that many ECUs
provide a reflashing protocol via the CAN bus (typically
following the SAE J2534 standard), allowing a peer to
overwrite the code with arbitrary functionality. Taken to-
gether, these results have been shown to allow control
over safety critical vehicle functionality including the
drivetrain and brakes on three different makes and mod-
els of vehicles. However, all these attacks required some
physical access to the CAN bus (e.g., via the OBD-II
port) thus increasing the cost and risk to the attacker.

In follow-on work to [4], Checkoway et al. showed
that a variety of completely remote exploits were pos-

1Snapshot alone serves over two million customers according to
2014 press materials from Progressive
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Figure 1: The CAN frame message format showing the
message identifier, packet size, message data, and CRC
sections.

sible, including by remotely subverting software in the
TCU designed to demodulate and frame digital packets
on an underlying audio channel [1]. It is our understand-
ing that Miller and Valasek will present related results
at the 2015 BlackHat USA Briefings as well. However,
as mentioned previously, these TCUs are “built-ins” sup-
plied by the vehicle manufacturer and thus there are a
number of avenues available for addressing such prob-
lem (e.g., updating software during regular service visits)
that would not be feasible for aftermarket products.

At least two researchers have specifically examined
the security of aftermarket “dongle” TCUs. The most
widely publicized is Corey Thuen’s examination of the
Progressive Snapshot device, wherein he extracted the
firmware and performed a security analysis showing
likely points of attack (although stopping short of identi-
fying a particular vulnerability or demonstrating a work-
ing exploit) [8, 9]. Ron Ofir and Ofer Kapora’s earlier
work went further and examined the Zubie telematics de-
vice and showed that if one could mount a cellular man-
in-the-middle attack (e.g., as feasible with a Stingray-
like base station) then they could update the software and
thereby inject CAN packets (e.g., unlocking doors) [7].
In our work, we show that such capabilities are unnec-
essary and that at least one popular TCU can be com-
promised in several different ways without any special
capabilities.

3 TCU Attack Surface

Our reference TCU was purchased from eBay (shown
in Figure 2) manufactured by Mobile Devices Ingenierie
and known to be used for insurance purposes (Metro-
mile’s per-mile consumer policies and for their com-
mercial driver on-demand policies offered in partnership
with Uber) among other settings [5, 10].2 Our reference

2There are several versions of this product, and slightly different
configurations are used by different customers, but in our experience
the software is substantially similar among all of them in the C4E fam-
ily and to the best of our knowledge all of the vulnerabilities we identify
exist across a range of product offerings and deployments.

Figure 2: Our TCU showing both the OBD-II and USB
connectivity.

device included a GPS, 3D Accelerometer, and 3D Gy-
roscope. It is based around a 500MHz ARM11 CPU,
64MB RAM, with 256MB flash storage. For external
connectivity it provides a USB port for programming, a
2G cellular data modem (3G in later models), and a CAN
transceiver chip wired to the OBD-II pins.

In evaluating the device, we consider two threat mod-
els: local and remote. In the local threat model we eval-
uate how an attacker may be able to attack the TCU di-
rectly in an effort to gain control over the device (e.g.,
for compromising the device after intercepting it during
shipping or after obtaining brief physical access to the
vehicle such as a valet might have). In the remote model
we assume that the attacker does not have physical access
to the TCU, but the TCU is installed in an automobile of
a victim and the attacker’s goal is to compromise the ve-
hicle.

3.1 Local attack surface

The local threat model assumes physical access to the
TCU, and the goal of the attacker is to penetrate the TCU
itself. We do not evaluate any automobile communica-
tions in this model as we assume an attacker with physi-
cal access already has access to the vehicle.

As mentioned before, our TCU includes a mini-USB
connector for debugging purposes, which is configured
to emulate a network adapter (i.e., once connected the
TCU appears as a device on the network). If the debug
console is enabled on the TCU then a web server is con-
figured to listen on port 80 and a telnet console on port 23
(both without authentication).3 The debugging interface
also allows for minimal configuration changes and soft-
ware updates to be installed. In addition, we identified
several test points on the internal circuit board (requiring
opening the packaging) and with physical access an at-
tacker can also remove the NAND flash chip and dump or
alter the contents (we discuss this attack in Section 4.1).

3Later we found that authentication could be enabled, however one
could trivially bypass it by modifying the URL visited. None of the
devices we tested had this authentication enabled.
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3.2 Remote attack surface

In the remote context, we assume that the adversary has
no physical access to the device or vehicle and may not
even know where they are located geographically.

The attack surface for the remote threat model is a 2G
modem (3G in later versions) that provides remote con-
nectivity over cellular networks. Both SMS and IP data
communications are used by the device for various func-
tions. Both interfaces will respond directly to requests
and thus can be remotely identified if the devices can be
remotely addressed (we discuss this issue further in Sec-
tion 4.3).

4 Evaluation

To evaluate the security of this TCU device, we explored
a range of local and remote vectors, the difficulty in iden-
tifying such devices and the challenges in manipulating
the device to control a vehicle. We describe our experi-
ence here (in roughly the order that our experiments took
place).

4.1 Local attacks

Given physical access to the device, the most convenient
means of connection is to interface with the USB port.
When a USB cable was connected to a powered device,
we were presented with a USB network interface. From
the available device documentation, we were able to de-
termine its subnet and IP address and then, using the
network interface, probe for running services of interest.
The device responded on standard ports for the telnet,
web and SSH services.

Web/telnet console access

When contacted, the web and telnet servers both pre-
sented a specialized interface for querying and setting
device parameters, as well as retrieving status informa-
tion. This includes privacy-sensitive information such as
the device’s current location as indicated by GPS. Addi-
tionally, a set of more advanced commands were exposed
including an interface to send a SMS message to a spec-
ified number. By using this feature, it was straightfor-
ward to identify the phone number used in the SIM chip
for subsequent SMS-based testing. We also identified an
interface for retrieving the version and state for all the
TCU’s internal components as well as the log files of the
underlying Linux kernel (both of which were helpful in
subsequent analysis). Finally, all configuration variables
for software modules running were exposed and change-
able..

NAND dump

To attempt to get more information on the software run-
ning on the device, we removed the NAND flash chip
and extracted the data using a hardware reader. Since the
TCU is a simple embedded device, the NAND flash does
not have a controller to give it a block abstraction, such
as with a desktop flash drive. Instead it exposes access to
the raw erase blocks and depends on the file system to
fully manage their use.

Thus, to access the extracted data, we used the Linux
nandsim kernel module. This module creates a simulated
raw NAND flash chip and is typically used for devel-
opment of file systems that will be deployed over these
types of chips. We configured this module to simulate a
clone of the NAND present on the TCU.4

Replicating this structure and appropriately copying
the dumped data gave us a perfect mountable copy of
the original chip. The Unsorted Block Image File Sys-
tem (UBIFS) manages error detection and correction on
raw flash chips and keeps track of bad blocks. Using the
UBI file system module allowed us to mount some of the
TCU partitions for reading.

One of these partitions contained the main third party
software running on the TCU. This includes a collection
of scripts and binaries related to various system actions,
such as moving between sleep modes and running up-
dates. We also found the main Java framework that man-
ages interaction with the TCU and sensor information
collection and transmission. Most importantly, the data
contained a number of public and private cryptographic
keys and certificates.

SSH keys

Initially, we had no access to the SSH service running
on the device, or even knowledge of what users existed
or what credentials to supply. This changed after we ex-
plored the dump of the NAND flash and identified the
private key for the root user. This key gave us the abil-
ity to authenticate to the device over SSH and directly
obtain a root shell. From here we could read and write
any file, execute arbitrary commands and download and
install additional software to create arbitrary functional-
ity. At first blush, this capability did not seem particu-
lar threatening, since it first depended on obtaining the
root private key via physical access to the device. How-
ever, upon testing this SSH key on several other TCU
devices from the same manufacturer (including in pro-
duction contexts) we found that the same key was in use.
Thus, it appears that the key we obtained is the default
(and potentially singular) key for all such devices. This

4The Linux logs taken from the web interface indicated the NAND
type, its block size and how it was partitioned.
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in turn was one of the enabling findings for our explo-
ration of remote attacks. 5

4.2 Remote attacks

After obtaining full control of the TCU via the USB in-
terface, we shifted our focus to the software exposed via
wireless interfaces available on the device: a cellular data
interface providing Internet connectivity and an SMS in-
terface.

Internet-based

In examining the code on the device, we discovered that
the web, telnet console, and SSH servers were bound to
all of the network interfaces and not simply USB. Since
this includes an Internet-connected cellular data modem,
an outside attacker could simply login to the TCU di-
rectly using the previously identified SSH key (assum-
ing the IP address were known). However, the particular
devices we tested were indirectly protected from this at-
tack vector as their cellular carriers made pervasive use
of network address translation (NAT) and thus we could
not directly address them. We note that this implementa-
tion is entirely a property of the carrier used, and if the
device used a cellular provider allowing direct address-
ing then this means of access would be effective. Indeed,
as we discuss later, we have found well over a thousand
such devices that are Internet exposed.

SMS-based

In addition to the cellular data connection, the device is
SMS capable and thus, if the phone number of a TCU is
known then an outside party can send it SMS messages.

Searching online revealed documentation for an SMS
administration interface which we discovered was also
enabled on all the devices we tested. Such commands
include retrieving or setting the same properties exposed
in the local debug interfaces, retrieval of sensor status
information such as modem, GPS position, and others,
initiating a remote update and more.

Of these, the remote update capability is the most se-
rious as it potentially provides a mechanism to obtain a
reverse shell and thus arbitrary access.

Limited documentation could be found on the up-
date procedure for the TCU; however after examining
logs created from initiating an update via SMS we were
able to determine the full update procedure as described
in Figure 3. The update procedure retrieves a special
text file, which for the purposes of this paper we’ll call

5We also found that the devices have common root and user pass-
words as well and that ssh is configured to accept password login.

UpdateFile.txt, from the server.6 This file contains a
file name, path, and hash of files to add or remove from
the system. The steps for the update procedure are as fol-
lows:

1. The SMS command rupd,USER,HOST,PORT,DIR

is sent to the TCU, which responds with
update,started.

2. The TCU uses SCP to remote into the HOST on port
PORT as user USER and retrieves UpdateFile.txt
from DIR.

3. UpdateFile.txt is examined and files which have
incorrect hashes or do not exist on the local system
are then retrieved via SCP from the update server to
a temporary directory on the TCU.

4. If the hashes of the new files match those found in
UpdateFile.txt, the new files are moved to their
target directories, otherwise the update process is
restarted.

5. If UpdateFile.txt contains any of the following
console commands, they are executed performing
the appropriate action: clear, identify, status,
or reset.

(SMS) rupd,...

Update Server

SMS
Device

TCU

(SMS) update,started

(SCP) get UpdateFile.txt

(SCP) get new files

Update Local
Files

(SCP) UpdateFile.txt

(SCP) new files...

Figure 3: Remote update procedure

There are a number of unfortunate choices in this de-
sign. First, updates are not cryptographically signed in
any way and thus it is easy to substitute arbitrary code in

6The true filename is a minor secret and easy to determine with
access to a device, but we do not use it here simply to filter out potential
low-level war dialing attacks while the problems described here are
being fixed.
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an update. Second, while the server authenticates the de-
vice (somewhat uselessly since all devices also seem to
share the same public and private update keypair) the de-
vie does not authenticate the server. Finally, the interface
allows an arbitrary update server to be chosen providing
significant flexibility to the attacker.

To verify these limitations we created a rogue update
server that serves an update which immediately spawns
a reverse shell and SSH tunnel to the victim TCU. The
attack, shown in Figure 4, consists of the following steps:

1. Initiate a remote update using our rogue server via
telnet, web, or SMS.

2. The TCU downloads UpdateFile.txt contain-
ing console.bak (the original console binary),
console (a shell script we created which contains
our attack), and the command clear.

3. After the TCU downloads all the files and re-
places the system console command with our con-
sole script it calls “console clear” to clear the
logs.

4. Our console script starts and replaces itself with the
original console.bak, starts a reverse shell and
SSH tunnel, sends a SMS to us informing us the
attack was successfully, and then calls the original
console with the clear command.

5. Once we receive the SMS from our script, or get a
notification from the update server that the reverse
shell is ready, we can SSH or tunnel into the device
to get a root shell and access to the telnet and web
interfaces.

Finally, we also validated that this update procedure
can be triggered via the web and telnet console interface
as well if they are accessible.

4.3 Finding devices
All forms of remote compromise (remote login via ssh,
or update via web, telnet console or SMS) require knowl-
edge of the TCU addresses – either its globally reachable
IP address or the phone number associated with the SIM
card. We found that there were several means of finding
this information in the wild.

If the TCU has a cellular network provider that does
not use NAT, the provided built-in web server is acces-
sible from the Internet and consequently can be indexed
by search engines. Indeed, doing an Internet search from
strings of words unique to the web interface revealed IP
addresses for a range of likely TCUs. Similarly, it is pos-
sible to identify vulnerable TCUs based on the informa-
tion exported from their telnet and SSH servers. The on-
line service Shodan collects and indexes a large amount

Update Server

SMS
Device

TCU

(SMS) rupd,...

(SMS) update,started

(SCP) get UpdateFile.txt

(SCP) get console.bak

Update Local
Files

(SCP) UpdateFile.txt

(SCP) console.bak

(SCP) get console

(SCP) console

clear logs
$ console clear

(SMS) rshell

(SSH) reverse tunnel

SSH

SSH

Figure 4: Remote exploitation via a malicious update
server

of meta-data based on Internet scans.7 Since all the TCUs
from this manufacturer use the same SSH server key,
the server fingerprint presented when connecting is also
identical. Searching for this fingerprint yielded the IP ad-
dresses of about 1500 potential devices. Searching for
the particular welcome message presented at the start of
a telnet session found about 3000 unique IP address. The
majority of the addresses were from Spanish ISPs. We
suspect this is a result of NAT not being deployed by at
least one wireless carrier in Spain.

We next assessed the possibility of finding devices by
phone number. Since the TCU requires a data connec-
tion to send the sensor information to a remote server, the
unit typically ships with a cellular connection with a pre-
paid data plan. The numbers for these connections were
not random. We found evidence that many are sequen-
tially assigned numbers from the 566 area code, which
is reserved for “personal communication services”. If
the phone number of one of these devices can be de-
termined, the nearby numbers have a high potential to
also be TCUs. Moreover, simply sending a SMS admin-

7http://www.shodanhq.com/
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istration command, such as “status,” would confirm a
TCU’s identity, and makes implementing a “war dialer”
for enumerating such devices relatively straightforward.

4.4 CAN bus capabilities
Having compromised a TCU, the next question is what
capabilities does it have. For example, one potential TCU
design would only receive CAN data from the OBD-II
port and would be incapable, at a hardware level, of send-
ing CAN messages. Alternatively, a TCU might allow
arbitrary CAN access and thereby allow an attacker to
directly communicate with the full range of ECUs on the
vehicle.

In exploring this question we identified two differ-
ent firmware versions in use on our family of TCUs.
The most recent version includes SocketCAN, which is
a Linux kernel module that presents the CAN bus as
a network interface. Additionally, these newer devices
shipped with the Linux can-utils package which includes
tools for reading, saving, creating, and replaying CAN
messages, much like the way one can do with packet cap-
tures for traditional network interfaces. With these tools
we found we could send and receive arbitrary CAN pack-
ets.

The older version of the firmware implemented a cus-
tom interface to send commands from the main ARM
CPU to a PIC micro-controller which controls the phys-
ical CAN controller on the TCU. After analyzing the se-
rial line between the ARM and PIC chips, we were able
to understand the protocol enough to send our own CAN
packets to the PIC chip. However, the PIC chip would
periodically query OBD-II and not send CAN packets if
it detected that the vehicle was not in ACC (Accessory)
mode and the ignition was off.

The TCUs shipped with a utility to flash the PIC
firmware, which we were able to modify to also dump
the existing firmware. After reverse engineering the
firmware dump, we were able to identify the ACC and
ignition checks, disable them, and reflash the “bypass”
version of the PIC image. This modification allowed us
to send CAN packets irrespective of what state the auto-
mobile is in.

4.5 Proof of Concept attack
Finally, having discovered how to remotely compromise
the TCU and convince it to send arbitrary CAN packets,
we constructed an end-to-end demonstration highlight-
ing the potential seriousness of the vulnerability. In our
demo, we assume that the phone number of the device
is known and that an attack payload for the victim car is
available (the combination of past experience and the in-
creasing availability of public CAN “recipes” allowed us

to construct our payload in only a few days even though
we have never worked with the test car before).

In our demo, we used a two-stage attack. The initial
payload is delivered via an SMS update command and
takes a minute to apply due to the slow 2G connection.
This first stage is very similar to the method described
earlier, but does not restore the original console appli-
cation back to the version saved as console.bak. In-
stead, it will start a reverse shell if we send the correct
SMS command, otherwise it will just call console.bak
directly. This allows for future reverse shells to be started
without the need to re-download the console file every
time. The second stage allows us to send another SMS
command to the device to start another reverse shell.
Starting a reverse shell during stage 2 takes a few sec-
onds at most. Putting this together, we worked with a
volunteer driver (operating at low speed to prevent in-
jury) and demonstrated remote control over both body
functions (remotely turning on windshield wipers) and
brakes (selectively applying brakes and selectively dis-
abling brakes). While this test was conducted at close
distance for safety purposes, it was not limited by prox-
imity and could have been carried out at arbitrary dis-
tance.

5 Proposed Solutions

In this section we provide some suggestions which, if
implemented, we feel would prevent the types of attacks
described in this paper.

5.1 Require update authentication
Once an update is initiated, it is performed entirely over
SSH/SCP. While SSH provides strong privacy and in-
tegrity for all communication, the remote host is not ver-
ified. Instead, a device authenticates itself to the server
and does not verify the server’s fingerprint. Additionally,
once the update is downloaded from the server, there is
no cryptographic verification to ensure authenticity of
the update. We suggest implementing code signing to
verify that updates received are actually the intended up-
date provided my the manufacture and written by a rogue
third party.

5.2 Stronger SMS authentication
While we found that these devices do support a SMS
whitelist and blacklist, we only found it enabled on a
small subset of them. It is also possible to remotely dis-
able or alter the SMS whitelist with the debug console,
web interface, or via a SMS from a “valid” number. SMS
whitelisting is not enough to perform remote authentica-
tion since telephone numbers are easily spoofable and
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whitelists cannot be secret since they are distributed with
the TCUs [2].8 Remote SMS administration should ei-
ther be disabled entirely or use an additional form of au-
thentication on top of SMS.

5.3 Key management
Every device shipped with both the private and public
keys for both the root SSH account and for logging in to
the update server. There is no need to have the private key
for root login on the device–only the public key should be
stored on the device. By keeping the private key on the
device the manufacturers are implicitly distributing the
key to anyone who is able to gain access to the device’s
file system. Furthermore, we see no need for the device to
authenticate itself to the update server–verifying the up-
date server’s fingerprint/public key should be sufficient.
If, for some reason, the device needs to authenticate itself
to the update server, each device should have a unique
key (and whose generation should be done with sufficent
entropy, a notorious problem with embedded systems).

5.4 Password management
After dumping /etc/shadow we discovered that the
passwords were hashed with MD5, and of the two users
(root and user) only the user account used a salt. Running
a moderately sized word list against the hashes found the
salted and hashed user password in under 10 seconds.
The user password was 8 characters make up of only
vowels and sequential numbers. It would have been bet-
ter to run different processes as different users (each with
the least permissions required to perform their intended
task), not all as root, and disable root SSH access.

5.5 Disable WAN administration
The web, telnet, and SSH services listen on all available
interfaces. This configuration means if the device has a
WAN connection (via the 2G modem) it is exposing its
debug interface to the world. This is especially bad when
the wireless ISP does not implement NAT. In this case the
devices can easily be found by scanning the web, which
resulted in many being indexed by Google and Shodan
as discussed in Section 4.3.

5.6 Require console authentication
Buried deep in the file system of the device was an op-
tion to require authentication for remote web or console
access. We found no way to enable this form of authen-
tication via any of the intended configuration interfaces,

8Indeed, we found the same entries in the whitelist across multiple
devices used by the same provider.

and none of the devices we examined had authentication
enabled. Additionally, once enabled, it could be trivially
bypassed for the web interface by altering the URL. This
leads us to believe that the console authentication feature
was never completed. We suggest requiring authentica-
tion for any sort of debugging access, local or remote.
And for such authentication to be enforced in such a way
that it cannot be bypassed. It would also be ideal if the
authentication was different for each device so that if the
authentication for one device was compromised it would
not allow access to the debug console of others.

5.7 Maintain update server
The domain name specified in the debug console used
to check for updates was found to be unregistered and
available. We believe when the TCUs send collected data
back to their cloud servers, the response may be able to
initiate an update from an alternate host. However the
default update domain is still configured and referenced
in the documentation. It is unclear whether the devices
periodically poll the default update server or if you need
to instruct it to check for an available update. We did not
attempt to register the domain, but if an attacker did they
may be able to take over every TCU that checks for an
update.

6 Disclosure

We disclosed our understanding of the problems with the
C4E class of TCUs to the vendor (Mobile Devices), to
Metromile (a customer of theirs using that platform), and
to Uber (a customer of Metromile).9 All were supportive
of our work, appreciative that we had informed them in
advance, and intimated that the problems would be fixed
(indeed, Metromile was concrete in its plans to disable
all SMS access on its branded devices, consistent with
our recommendation) or had already been fixed. How-
ever, we also experienced some of the challenges with
this space arising from complex supply chain in which a
device is customized for different markets.

In particular, while Mobile Devices indicated that
many of the problems we found had been fixed in sub-
sequent versions of software, we did not find those soft-
ware updates on recent production devices we had tested
(i.e., a newer software update that fixes bugs only helps
if there is a mechanism for then deploying it across the
legacy customers of the platform). Similarly, Mobile De-
vices suggested that our attacks should not work on pro-
duction deployments of their devices since the consoles
are only enabled in “developer mode” which should not

9We also recently informed DHS/US CERT, which created a team
specifically tasked with dealing with various OBD-II vulnerability dis-
closures.
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be deployed except for testing and that production de-
ployments should not include SIM cards that allow SMS
exchanges. While we have no way to evaluate these
claims, they seem reasonable. Yet even if we take these
statements at face value, they suggest a disconnect in the
interface with customers since we identified these prob-
lems in a number of production devices directly (to say
nothing of the several thousand we identified online).

This suggests that vendors of such devices (i.e., those
that simultaneously are exposed to remote access and
connect to safety-critical system) may need to anticipate
efficient ways to roll out updates on short notice to a wide
array of customers (from hobbyists to fleet managers).

7 Conclusion

In this paper, we presented a security analysis of a pop-
ular aftermarket telematics control unit. We were able to
demonstrate both local and remote vulnerabilities, result-
ing from a combination of bad architectural decisions
(e.g., the design of the update protocol) and particular
configuration options (e.g., the use of SMS and debug-
ging features in production deployments and the use of
identical keys and passwords among such devices). We
have experimentally validated that these vulnerabilities
can be exploited; in particular, demonstrating a complete
remote compromise via SMS. Once compromised, we
have shown that the TCU can send arbitrary CAN pack-
ets, and that this is sufficient to remotely control safety-
critical automobile features (e.g., the brakes). Finally,
we provided some immediate suggestions for the man-
ufacturer that would improve their security. Long-term
we believe that the industry will require stronger mech-
anisms for code signing, authentication, and for limit-
ing what kinds of communications a particular device
can engage in (e.g., CAN firewalls), as well as efficient
mechanisms for updating legacy vulnerable devices in
the field.
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