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Abstract
Modern automobiles are pervasively computerized, and
hence potentially vulnerable to attack. However, while
previous research has shown that the internal networks
within some modern cars are insecure, the associated
threat model — requiring prior physical access — has
justifiably been viewed as unrealistic. Thus, it remains an
open question if automobiles can also be susceptible to
remote compromise. Our work seeks to put this question
to rest by systematically analyzing the external attack
surface of a modern automobile. We discover that remote
exploitation is feasible via a broad range of attack vectors
(including mechanics tools, CD players, Bluetooth and
cellular radio), and further, that wireless communications
channels allow long distance vehicle control, location
tracking, in-cabin audio exfiltration and theft. Finally, we
discuss the structural characteristics of the automotive
ecosystem that give rise to such problems and highlight
the practical challenges in mitigating them.

1 Introduction
Modern cars are controlled by complex distributed com-
puter systems comprising millions of lines of code execut-
ing on tens of heterogeneous processors with rich connec-
tivity provided by internal networks (e.g., CAN). While
this structure has offered significant benefits to efficiency,
safety and cost, it has also created the opportunity for new
attacks. For example, in previous work we demonstrated
that an attacker connected to a car’s internal network can
circumvent all computer control systems, including safety
critical elements such as the brakes and engine [14].

However, the threat model underlying past work
(including our own) has been met with significant, and
justifiable, criticism (e.g., [1, 3, 16]). In particular, it is
widely felt that presupposing an attacker’s ability to physi-
cally connect to a car’s internal computer network may be
unrealistic. Moreover, it is often pointed out that attackers
with physical access can easily mount non-computerized
attacks as well (e.g., cutting the brake lines).

This situation suggests a significant gap in knowledge,
and one with considerable practical import. To what ex-
tent are external attacks possible, to what extent are they
practical, and what vectors represent the greatest risks?
Is the etiology of such vulnerabilities the same as for
desktop software and can we think of defense in the same
manner? Our research seeks to fill this knowledge gap
through a systematic and empirical analysis of the remote
attack surface of late model mass-production sedan.

We make four principal contributions:
Threat model characterization. We systematically
synthesize a set of possible external attack vectors as
a function of the attacker’s ability to deliver malicious
input via particular modalities: indirect physical access,
short-range wireless access, and long-range wireless
access. Within each of these categories, we characterize
the attack surface exposed in current automobiles and
their surprisingly large set of I/O channels.
Vulnerability analysis. For each access vector category,
we investigate one or more concrete examples in depth
and assess the level of actual exposure. In each case we
find the existence of practically exploitable vulnerabilities
that permit arbitrary automotive control without requiring
direct physical access. Among these, we demonstrate the
ability to compromise a car via vulnerable diagnostics
equipment widely used by mechanics, through the media
player via inadvertent playing of a specially modified
song in WMA format, via vulnerabilities in hands-free
Bluetooth functionality and, finally, by calling the car’s
cellular modem and playing a carefully crafted audio
signal encoding both an exploit and a bootstrap loader
for additional remote-control functionality.
Threat assessment. From these uncovered vulnerabili-
ties, we consider the question of “utility” to an attacker:
what capabilities does the vulnerability enable? Unique
to this work, we study how an attacker might leverage a
car’s external interfaces for post-compromise control. We
demonstrate multiple post-compromise control channels
(including TPMS wireless signals and FM radio), inter-



active remote control via the Internet and real-time data
exfiltration of position, speed and surreptitious streaming
of cabin audio (i.e., anything being said in the vehicle) to
an outside recipient. Finally, we also explore potential at-
tack scenarios and gauge whether these threats are purely
conceptual or whether there are plausible motives that
transform them into actual risks. In particular, we demon-
strate complete capabilities for both theft and surveillance.
Synthesis. On reflection, we noted that the vulnera-
bilities we uncovered have surprising similarities. We
believe that these are not mere coincidences, but that
many of these security problems arise, in part, from
systemic structural issues in the automotive ecosystem.
Given these lessons, we make a set of concrete, pragmatic
recommendations which significantly raise the bar for
automotive system security. These recommendations are
intended to “bridge the gap” until deeper architectural
redesign can be carried out.

2 Background and Related Work
Modern automobiles are controlled by a heterogeneous
combination of digital components. These components,
Electronic Control Units (ECUs), oversee a broad range
of functionality, including the drivetrain, brakes, lighting,
and entertainment. Indeed, very few operations are not
mediated by computer control in a modern vehicle (with
the parking brake and steering being the last holdouts,
though semi-automatic parallel parking capabilities are
available in some vehicles and full steer-by-wire has been
demonstrated in several concept cars). Charette estimates
that a modern luxury vehicle includes up to 70 distinct
ECUs including tens of millions of lines of code [5]. In
turn, ECUs are interconnected by common wired net-
works, usually a variant of the Controller Area Network
(CAN) [12] or FlexRay bus [8]. This interconnection
permits complex safety and convenience features such as
pre-tensioning of seat-belts when a crash is predicted and
automatically varying radio volume as a function of speed.

At the same time, this architecture provides a broad
internal attack surface since on a given bus each compo-
nent has at least implicit access to every other component.
Indeed, several research groups have described how
this architecture might be exploited in the presence
of compromised components [15, 24, 26, 27, 28] or
demonstrated such exploits by spoofing messages to
isolated components in the lab [10]. Most recently,
our own group documented experiments on a complete
automobile, demonstrating that if an adversary were
able to communicate on one or more of a car’s internal
network buses, then this capability could be sufficient
to maliciously control critical components across the
entire car (including dangerous behavior such as forcibly
engaging or disengaging individual brakes independent of
driver input) [14]. However, these results raise the ques-

tion of how an adversary might be able to access a car’s
internal bus (and thus compromise its ECUs) absent direct
physical access, a question that we answer in this paper.

About the latter question — understanding the external
attack surface of modern vehicles — there has been
far less research work. Among the exceptions is Rouf
et al.’s recent analysis of the wireless Tire Pressure
Monitoring System (TPMS) in a modern vehicle [22].
While their work was primarily focused on the privacy
implications of TPMS broadcasts, they also described
methods for manipulating drivers by spoofing erroneous
tire pressure readings and, most relevant to our work,
an experience in which they accidentally caused the
ECU managing TPMS data to stop functioning through
wireless signals alone. Still others have focused on the
computer security issues around car theft, including
Francillon et al.’s recent demonstration of relay attacks
against keyless entry systems [9], and the many attacks
on the RFID-based protocols used by engine immobi-
lizers to identify the presence of a valid ignition key,
e.g., [2, 6, 11]. Orthogonally, there has been work that
considers the future security issues (and expanded attack
surface) associated with proposed vehicle-to-vehicle
(V2V) systems (sometimes also called vehicular ad-hoc
networks, or VANETs) [4, 13, 21]. To the best of our
knowledge, however, we are the first to consider the full
external attack surface of the contemporary automobile,
characterize the threat models under which this surface is
exposed, and experimentally demonstrate the practicality
of remote threats, remote control, and remote data
exfiltration. Our experience further gives us the vantage
point to reflect on some of the ecosystem challenges that
give rise to these problems and point the way forward
to better secure the automotive platform in the future.

3 Automotive threat models
While past work has illuminated specific classes of threats
to automotive systems — such as the technical security
properties of their internal networks [14, 15, 24, 26, 27,
28] — we believe that it is critical for future work to place
specific threats and defenses in the context of the entire
automotive platform. In this section, we aim to bootstrap
such a comprehensive treatment by characterizing the
threat model for a modern automobile. Though we
present it first, our threat model is informed significantly
by the experimental investigations we carried out, which
are described in subsequent sections.

In defining our threat model, we distinguish between
technical capabilities and operational capabilities.

Technical capabilities describe our assumptions con-
cerning what the adversary knows about its target vehicles
as well as her ability to analyze these systems to develop
malicious inputs for various I/O channels. For example,
we assume that the adversary has access to an instance of



the automobile model being targeted and has the technical
skill to reverse engineer the appropriate subsystems and
protocols (or is able to purchase such information from
a third-party). Moreover, we assume she is able to obtain
the appropriate hardware or medium to transmit messages
whose encoding is appropriate for any given channel.1

When encountering cryptographic controls, we also
assume that the adversary is computationally bounded
and cannot efficiently brute force large shared secrets,
such as large symmetric encryption keys. In general, we
assume that the attacker only has access to information
that can be directly gleaned from examining the systems
of a vehicle similar to the one being targeted.2 We believe
these assumptions are quite minimal and mimic the
access afforded to us when conducting this work.

By contrast, operational capabilities characterize the
adversary’s requirements in delivering a malicious input
to a particular access vector in the field. In considering
the full range of I/O capabilities present in a modern
vehicle, we identify the qualitative differences in the
challenges required to access each channel. These in
turn can be roughly classified into three categories:
indirect physical access, short-range wireless access,
and long-range wireless access. In the remainder of this
section we explore the threat model for each of these
categories and within each we synthesize the “attack
surface” presented by the full range of I/O channels
present in today’s automobiles. Figure 1 highlights where
I/O channels exist on a modern automobile today.

3.1 Indirect physical access
Modern automobiles provide several physical interfaces
that either directly or indirectly access the car’s internal
networks. We consider the full physical attack surface
here, under the constraint that the adversary may not
directly access these physical interfaces herself but must
instead work through some intermediary.
OBD-II. The most significant automotive interface is
the OBD-II port, federally mandated in the U.S., which
typically provides direct access to the automobile’s
key CAN buses and can provide sufficient access to
compromise the full range of automotive systems [14].
While our threat model forbids the adversary from direct
access herself, we note that the OBD-II port is commonly

1For the concrete vulnerabilities we will explore, the hardware
cost for such capabilities is modest, requiring only commodity laptop
computers, an audio card, a USB-to-CAN interface, and, in a few
instances, an inexpensive, off-the-shelf USRP software radio platform.

2A question which we do not consider in this work is the extent to
which the attack surface is “portable” between vehicle models from
a given manufacturer. There is significant evidence that some such
attacks are portable as manufacturers prefer to build a small number
of underlying platforms that are specialized to deliver model-specific
features, but we are not in a position to evaluate this question compre-
hensively.

Figure 1: Digital I/O channels appearing on a modern
car. Colors indicate rough grouping of ECUs by function.

accessed by service personnel during routine maintenance
for both diagnostics and ECU programming.

Historically this access is achieved using dedicated
handheld “scan” tools such as Ford’s NGS, Nissan’s
Consult II and Toyota’s Diagnostic Tester which are
themselves programmed via Windows-based personal
computers. For modern vehicles, most manufacturers
have adopted an approach that is PC-centric. Under this
model, a laptop computer interfaces with a “PassThru”
device (typically directly via USB or WiFi) that in turn
is plugged into the car’s OBD-II port. Software on the
laptop computer can then interrogate or program the car’s
ECUs via this device (typically using the standard SAE
J2534 API). Examples of such tools include Toyota’s
TIS, Ford’s VCM, Nissan’s Consult 3 and Honda’s HDS
among others.

In both situations Windows-based computers directly
or indirectly control the data to be sent to the automobile.
Thus, if an adversary were able to compromise such
systems at the dealership she could amplify this access to
attack any cars under service. Such laptop computers are
typically Internet-connected (indeed, this is a requirement
for some manufacturers’ systems), so traditional means
of personal computer compromise could be employed.

Further afield, electric vehicles may also communicate
with external chargers via the charging cable. An
adversary able to compromise the external charging
infrastructure may thus be able to leverage that access
to subsequently attack any connected automobile.
Entertainment: Disc, USB and iPod. The other
important class of physical interfaces are focused on
entertainment systems. Virtually all automobiles shipped
today provide a CD player able to interpret a wide
variety of audio formats (raw “Red Book” audio, MP3,
WMA, and so on). Similarly, vehicle manufacturers also
provide some kind of external digital multimedia port
(typically either a USB port or an iPod/iPhone docking
port) for allowing users to control their car’s media



system using their personal audio player or phone. Some
manufacturers have widened this interface further; BMW
and Mini recently announced their support for “iPod Out,”
a scheme whereby Apple media devices will be able to
control the display on the car’s console.

Consequently, an adversary might deliver malicious
input by encoding it onto a CD or as a song file and
using social engineering to convince the user to play it.
Alternatively, she might compromise the user’s phone or
iPod out of band and install software onto it that attacks
the car’s media system when connected.

Taking over a CD player alone is a limited threat; but,
for a variety of reasons, automotive media systems are
not standalone devices. Indeed, many such systems are
now CAN bus interconnected, either to directly interface
with other automotive systems (e.g., to support chimes,
certain hands-free features, or to display messages on
the console) or simply to support a common maintenance
path for updating all ECU firmware. Thus, counterintu-
itively, a compromised CD player can offer an effective
vector for attacking other automotive components.

3.2 Short-range wireless access
Indirect physical access has a range of drawbacks in-
cluding its operational complexity, challenges in precise
targeting, and the inability to control the time of compro-
mise. Here we weaken the operational requirements on
the attacker and consider the attack surface for automotive
wireless interfaces that operate over short ranges. These
include Bluetooth, Remote Keyless Entry, RFIDs, Tire
Pressure Monitoring Systems, WiFi, and Dedicated Short-
Range Communications. For this portion of the attack
surface we assume that the adversary is able to place
a wireless transmitter in proximity to the car’s receiver
(between 5 and 300 meters depending on the channel).
Bluetooth. Bluetooth has become the de facto standard
for supporting hands-free calling in automobiles and
is standard in mainstream vehicles sold by all major
automobile manufacturers. While the lowest level of the
Bluetooth protocol is typically implemented in hardware,
the management and services component of the Bluetooth
stack is often implemented in software. In normal usage,
the Class 2 devices used in automotive implementations
have a range of 10 meters, but others have demonstrated
that this range can be extended through amplifiers and
directional antennas [20].
Remote Keyless Entry. Today, all but entry-level
automobiles shipped in the U.S. use RF-based remote
keyless entry (RKE) systems to remotely open doors,
activate alarms, flash lights and, in some cases, start the
ignition (all typically using digital signals encoded over
315 MHz in the U.S. and 433 MHz in Europe).
Tire pressure. In the U.S., all 2007 model year and
newer cars are required to support a Tire Pressure Moni-

toring System (TPMS) to alert drivers about under or over
inflated tires. The most common form of such systems, so-
called “Direct TPMS,” uses rotating sensors that transmit
digital telemetry (frequently in similar bands as RKEs).
RFID car keys. RFID-based vehicle immobilizers
are now nearly ubiquitous in modern automobiles and
are mandatory in many countries throughout the world.
These systems embed an RFID tag in a key or key fob
and a reader in or near the car’s steering column. These
systems can prevent the car from operating unless the
correct key (as verified by the presence of the correct
RFID tag) is present.
Emerging short-range channels. A number of manu-
facturers have started to discuss providing 802.11 WiFi
access in their automobiles, typically to provide “hotspot”
Internet access via bridging to a cellular 3G data link.
In particular, Ford offers this capability in the 2012
Ford Focus. (Several 2011 models also provided WiFi
receivers, but we understand they were used primarily
for assembly line programming.)

Finally, while not currently deployed, an emerging
wireless channel is defined in the Dedicated Short-Range
Communications (DSRC) standard, which is being
incorporated into proposed standards for Cooperative
Collision Warning/Avoidance and Cooperative Cruise
Control. Representative programs in the U.S. include the
Department of Transportation’s Cooperative Intersection
Collision Avoidance Systems (CICAS-V) and the Vehicle
Safety Communications Consortium’s VSC-A project.
In such systems, forward vehicles communicate digitally
to trailing cars to inform them of sudden changes in
acceleration to support improved collision avoidance and
harm reduction.
Summary. For all of these channels, if a vulnerability ex-
ists in the ECU software responsible for parsing channel
messages, then an adversary may compromise the ECU
(and by extension the entire vehicle) simply by transmit-
ting a malicious input within the automobile’s vicinity.

3.3 Long-range wireless
Finally, automobiles increasingly include long distance
(greater than 1 km) digital access channels as well. These
tend to fall into two categories: broadcast channels and
addressable channels.
Broadcast channels. Broadcast channels are chan-
nels that are not specifically directed towards a given
automobile but can be “tuned into” by receivers on-
demand. In addition to being part of the external at-
tack surface, long-range broadcast mediums can be
appealing as control channels (i.e., for triggering at-
tacks) because they are difficult to attribute, can com-
mand multiple receivers at once, and do not require
attackers to obtain precise addressing for their vic-
tims.



The modern automobile includes a plethora of broad-
cast receivers for long-range signals: Global Positioning
System (GPS),3 Satellite Radio (e.g., SiriusXM receivers
common to late-model vehicles from Honda/Accura, GM,
Toyota, Saab, Ford, Kia, BMW and Audi), Digital Radio
(including the U.S. HD Radio system, standard on 2011
Ford and Volvo models, and Europe’s DAB offered in
Ford, Audi, Mercedes, Volvo and Toyota among others),
and the Radio Data System (RDS) and Traffic Message
Channel (TMC) signals transmitted as digital subcarriers
on existing FM-bands.

The range of such signals depends on transmitter
power, modulation, terrain, and interference. As an
example, a 5 W RDS transmitter can be expected to
deliver its 1.2 kbps signal reliably over distances up
to 10 km. In general, these channels are implemented in
an automobile’s media system (radio, CD player, satellite
receiver) which, as mentioned previously, frequently
provides access via internal automotive networks to other
key automotive ECUs.
Addressable channels. Perhaps the most important part
of the long-range wireless attack surface is that exposed
by the remote telematics systems (e.g., Ford’s Sync,
GM’s OnStar, Toyota’s SafetyConnect, Lexus’ Enform,
BMW’s BMW Assist, and Mercedes-Benz’ mbrace) that
provide continuous connectivity via cellular voice and
data networks. These systems provide a broad range of
features supporting safety (crash reporting), diagnostics
(early alert of mechanical issues), anti-theft (remote track
and disable), and convenience (hands-free data access
such as driving directions or weather).

These cellular channels offer many advantages for
attackers. They can be accessed over arbitrary distance
(due to the wide coverage of cellular data infrastructure)
in a largely anonymous fashion, typically have relatively
high bandwidth, are two-way channels (supporting inter-
active control and data exfiltration), and are individually
addressable.
Stepping back. There is a significant knowledge gap
between these possible threats and what is known to
date about automotive security. Given this knowledge
gap, much of this threat model may seem far-fetched.
However, in the next section of this paper we find quite
the opposite. For each category of access vector we
will explore one or two aspects of the attack surface
deeply, identify concrete vulnerabilities, and explore and
demonstrate practical attacks that are able to completely
compromise our target automobile’s systems without
requiring direct physical access.

3We do not currently consider GPS to be a practical access vector
for an attacker because in all automotive implementations we are aware
of, GPS signals are processed predominantly in custom hardware. By
contrast, we have identified significant software-based input processing
in other long-range wireless receivers.

4 Vulnerability Analysis
We now turn to our experimental exploration of the
attack surface. We first describe the automobile and
key components under evaluation and provide some
context for the tools and methods we employed. We then
explore in-depth examples of vulnerabilities via indirect
physical channels (CDs and service visits), short-range
wireless channels (Bluetooth), and long-range wireless
(cellular). Table 1 summarizes these results as well as our
qualitative assessment of the cost (in effort) to discover
and exploit these vulnerabilities.

4.1 Experimental context
All of our experimental work focuses on a moderately
priced late model sedan with the standard options and
components. Between 100,000 and 200,000 of this
model were produced in the year of manufacture. The
car includes less than 30 ECUs comprising both critical
drivetrain components as well as less critical components
such as windshield wipers, door locks and entertainment
functions. These ECUs are interconnected via multiple
CAN buses, bridged where necessary. The car exposes
a number of external vectors including the OBD-II port,
media player, Bluetooth, wireless TPMS sensors, keyless
entry, satellite radio, RDS, and a telematics unit. The
last provides voice and data access via cellular networks,
connects to all CAN buses, and has access to Bluetooth,
GPS and independent hands-free audio functionality (via
an embedded microphone in the passenger cabin). We
also obtained the manufacturer’s standard “PassThru”
device used by dealerships and service stations for
ECU diagnosis and reprogramming, as well as the
associated programming software. For several ECUs,
notably the media and telematics units, we purchased a
number of identical replacement units via on-line markets
to accommodate the inevitable “bricking” caused by
imperfect attempts at code injection.

Building on our previous work, we first established
a set of messages and signals that could be sent on our
car’s CAN bus (via OBD-II) to control key components
(e.g., lights, locks, brakes, and engine) as well as injecting
code into key ECUs to insert persistent capabilities and to
bridge across multiple CAN buses [14]. Note, such inter-
bus bridging is critical to many of the attacks we explore
since it exposes the attack surface of one set of compo-
nents to components on a separate bus; we explain briefly
here. Most vehicles implement multiple buses, each of
which host a subset of the ECUs.4 However, for func-

4In prior work we hypothesized that CAN buses were purposely
separated for security reasons — one for safety-critical components like
the radio and engine and the other for less important components such
as a radio. Based on discussions with industry experts we have learned
that this separation has until now often been driven by bandwidth and
integration concerns and not necessarily security.



Vulnerability Implemented Visible Full
Class Channel Capability to User Scale Control Cost Section

Direct physical OBD-II port Plug attack hardware directly into car
OBD-II port

Yes Small Yes Low Prior work [14]

Indirect physical CD CD-based firmware update Yes Small Yes Medium Section 4.2
CD Special song (WMA) Yes∗ Medium Yes Medium-High Section 4.2
PassThru WiFi or wired control connection to

advertised PassThru devices
No Small Yes Low Section 4.2

PassThru WiFi or wired shell injection No Viral Yes Low Section 4.2

Short-range
wireless

Bluetooth Buffer overflow with paired Android
phone and Trojan app

No Large Yes Low-Medium Section 4.3

Bluetooth Sniff MAC address, brute force PIN,
buffer overflow

No Small Yes Low-Medium Section 4.3

Long-range
wireless

Cellular Call car, authentication exploit, buffer
overflow (using laptop)

No Large Yes Medium-High Section 4.4

Cellular Call car, authentication exploit, buffer
overflow (using iPod with exploit au-
dio file, earphones, and a telephone)

No Large Yes Medium-High Section 4.4

Table 1: Attack surface capabilities. The Visible to User column indicates whether the compromise process is visible to the
user (the driver or the technician); we discuss social engineering attacks for navigating user detection in the body. For (∗),
users will perceive a malfunctioning CD. The Scale column captures the approximate scale of the attack, e.g., the CD firmware
update attack is small-scale because it requires distributing a CD to each target car. The Full Control column indicates whether
this exploit yields full control over the component’s connected CAN bus (and, by transitivity, all the ECUs in the car). Finally,
the Cost column captures the approximate effort to develop these attack capabilities.

tionality reasons these buses must be interconnected to
support the complex coupling between pairs of ECUs and
thus a small number of ECUs are physically connected to
multiple buses and act as logical bridges. Consequently,
by modifying the “bridge” ECUs (either via a vulnerabil-
ity or simply by reflashing them over the CAN bus as they
are designed to be) an attacker can amplify an attack on
one bus to gain access to components on another. Con-
sequently, the result is that compromising any ECU with
access to some CAN bus on our vehicle (e.g., the media
player) is sufficient to compromise the entire vehicle.

Combining these ECU control and bridging com-
ponents, we constructed a general “payload” that we
attempted to deliver in our subsequent experiments
with the external attack surface.5 To be clear, for every
vulnerability we demonstrate, we are able to obtain
complete control over the vehicle’s systems. We did
not explore weaker attacks.

For each ECU we consider, our experimental approach
was to extract its firmware and then explicitly reverse
engineering its I/O code and data flow using disassembly,
interactive logging and debugging tools where appropri-
ate. In most cases, extracting the firmware was possible
directly via the CAN bus (this was especially convenient
because in most ECUs we encountered, the flash chips
are not socketed and while we were able to desolder and
read such chips directly, the process was quite painful).

Having the firmware in hand, we performed three basic
types of analysis: raw code analysis, in situ observations,

5In this work we experimented with two equivalent vehicles to ensure
that our results were not tied to artifacts of a particular vehicle instance.

and interactive debugging with controlled inputs on the
bench. In the first case, we identified the microprocessor
(e.g., different components described in this paper use
System on Chip (SoC) variants of the PowerPC, ARM,
Super-H and other architectures) and used the industry-
standard IDA Pro disassembler to map control flow and
identify potential vulnerabilities, as well as debugging
and logging options that could be enabled to aid in
reverse engineering.6 In situ observation with logging
enabled allowed us to understand normal operation of the
ECU and let us concentrate on potential vulnerabilities
near commonly used code paths. Finally, ECUs were
removed from the car and placed into a test harness on the
bench from which we could carefully control all inputs
and monitor outputs. In this environment, interactive
debuggers were used to examine memory and single step
through vulnerable code under repeatable conditions. For
one such device, the Super-H-based media player, we
resorted to writing our own native debugger and exported
a control and output interface through an unused serial
UART interface we “broke out” off the circuit board.

In general, we made use of any native debugging I/O
we could identify. For example, like the media player,
the telematics unit exposed an unused UART that we
tapped to monitor internal debugging messages as we
interactively probed its I/O channels. In other cases, we

6IDA Pro does not support embedded architectures as well as x86
and consequently we needed to modify IDA Pro to correctly parse
the full instruction set and object format of the target system. In one
particular case (for the TPMS processor) IDA Pro did not provide any
native support and we were forced to write a complete architecture
module in order to use the tool.



selectively rewrote ECU memory (via the CAN bus or by
exploiting software vulnerabilities) or rewrote portions
of the flash chips using the manufacturer-standard ECU
programming tools. For the telematics unit, we wrote
a new character driver that exported a command shell
to its Unix-like operating system directly over the OBD-
II port to enable interactive debugging in a live vehicle.
In the end, our experience was that although the ECU
environment was somewhat more challenging than that
of desktop operating systems, it was surmountable with
dedicated effort.

4.2 Indirect physical channels
We consider two distinct indirect physical vectors in
detail: the media player (via the CD player) and service
access to the OBD-II port. We describe each in turn
along with examples of when an adversary might be able
to deliver malicious input.
Media player. The media player in our car is fairly
typical, receiving a variety of wireless broadcast signals,
including analog AM and FM as well as digital signals
via FM sub-carriers (RDS, called RBDS in the U.S.) and
satellite radio. The media player also accepts standard
compact discs (via physical insertion) and decodes audio
encoded in a number of formats including raw Red Book
audio as well as MP3 and WMA files encoded on an
ISO 9660 filesystem.

The media player unit itself is manufactured by a
major supplier of entertainment systems, both stock units
directly targeted for automobile manufacturers as well
as branded systems sold via the aftermarket. Software
running on the CPU handles audio parsing and playback
requests, UI functions, and directly handles connections
to the CAN bus.

We found two vulnerabilities. First, we identified a
latent update capability in the media player that will
automatically recognize an ISO 9660-formatted CD with
a particularly named file, present the user with a cryptic
message and, if the user does not press the appropriate
button, will then reflash the unit with the data contained
therein.7 Second, knowing that the media player can
parse complex files, we examined the firmware for input
vulnerabilities that would allow us to construct a file that,
if played, gives us the ability to execute arbitrary code.

For the latter, we reverse-engineered large parts of the
media player firmware, identifying the file system code
as well as the MP3 and WMA parsers. In doing so, we
documented that one of the file read functions makes
strong assumptions about input length and moreover that
there is a path through the WMA parser (for handling
an undocumented aspect of the file format) that allows

7This is not the standard method that the manufacturer uses to
update the media player software and thus we believe this is likely a
vestigial capability in the supplier’s code base.

arbitrary length reads to be specified; together these allow
a buffer overflow.

This particular vulnerability is not trivial to exploit.
The buffer that is overflowed is not on the stack but
in a BSS segment, without clear control data variables
to hijack. Moreover, immediately after the buffer are
several dynamic state variables whose values are con-
tinually checked and crash the system when overwritten
arbitrarily.

To overcome these and other obstacles, we developed
a native in-system debugger that communicates over an
unused serial port we identified on the media player. This
debugger lets us dump and alter memory, set breakpoints,
and catch exceptions. Using this debugger we were
able to find several nearby dynamic function pointers
to overwrite as well as appropriate contents for the
intervening state variables.

We modified a WMA audio file such that, when burned
onto a CD, plays perfectly on a PC but sends arbitrary
CAN packets of our choosing when played by our car’s
media player. This functionality adds only a small space
overhead to the WMA file. One can easily imagine many
scenarios where such an audio file might find its way into
a user’s media collection, such as being spread through
peer-to-peer networks.
OBD-II. The OBD-II port can access all CAN buses in
the vehicle. This is standard functionality because the
OBD-II port is the principal means by which service
technicians diagnose and update individual ECUs in a
vehicle. This process is intermediated by hardware tools
(sold both by automobile manufacturers and third parties)
that plug into the OBD-II port and can then be used
to upgrade ECUs’ firmware or to perform a myriad of
diagnostic tasks such as checking the diagnostic trouble
codes (DTCs).

Since 2004, the Environmental Protection Agency
has mandated that all new cars in the U.S. support the
SAE J2534 “PassThru” standard — a Windows API
that provides a standard, programmatic interface to
communicate with a car’s internal buses. This is typically
implemented as a Windows DLL that communicates
over a wired or wireless network with the reprogram-
ming/diagnostic tool (hereafter we refer to the latter
simply as “the PassThru device”). The PassThru device
itself plugs into the OBD-II port in the car and from that
vantage point can communicate on the vehicle’s internal
networks under the direction of software commands sent
via the J2534 API. In this way, applications developed
independently of the particular PassThru device can be
used for reprogramming or diagnostics.

We studied the most commonly used PassThru device
for our car, manufactured by a well-known automotive
electronics supplier on an OEM basis (the same device
can be used for all current makes and models from



the same automobile manufacturer). The device itself
is roughly the size of a paperback book and consists
of a popular SoC microprocessor running a variant of
Linux as well as multiple network interfaces, including
USB and WiFi — and a connector for plugging into
the car’s OBD-II port.8 We discovered two classes of
vulnerabilities with this device. First, we find that an
attacker on the same WiFi network as the PassThru
device can easily connect to it and, if the PassThru
device is also connected to a car, obtain control over
the car’s reprogramming. Second, we find it possible to
compromise the PassThru device itself, implant malicious
code, and thereby affect a far greater number of vehicles.
To be clear, these are vulnerabilities in the PassThru
device itself, not the Windows software which normally
communicates with it. We experimentally evaluated both
vulnerability classes and elaborate on our analyses below.

After booting up, the device periodically advertises
its presence by sending a UDP multicast packet on each
network to which it is connected, communicating both
its IP address and a TCP port for receiving client requests.
Client applications using the PassThru DLL connect to
the advertised port and can then configure the PassThru
device or command it to begin communicating with the
vehicle. Communication between the client application
and the PassThru device is unauthenticated and thus
depends exclusively on external network security for
any access control. Indeed, in its recommended mode
of deployment, any PassThru device should be directly
accessible by any dealership computer. A limitation is
that only a single application can communicate with a
given PassThru device at a time, and thus the attacker
must wait for the device to be connected but not in use.

The PassThru device exports a proprietary, unauthen-
ticated API for configuring its network state (e.g., for
setting with which WiFi SSID it should associate). We
identified input validation bugs in the implementation of
this protocol that allow an attacker to run arbitrary Bourne
Shell commands via shell-injection, thus compromising
the unit. The underlying Linux distribution includes pro-
grams such as telnetd, ftp, and nc so, having gained
entry to the device via shell injection, it is trivial for the
attacker to open access for inbound telnet connections
(exacerbated by a poor choice of root password) and then
transfer additional data or code as necessary.

To evaluate the utility of this vulnerability and make
it concrete, we built a program that combines all of these
steps. It contacts any PassThru devices being advertised
(e.g., via their WiFi connectivity or if connected directly
via Ethernet), exploits them via shell injection, and

8The manufacturer’s dealership guidelines recommend the use of
the WiFi interface, thereby supporting an easier tetherless mode of use,
and suggest the use of link-layer protection such as WEP (or, in the
latest release of the device, WPA2) to prevent outside access.
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Figure 2: PassThru-based shell-injection exploit scenario.
The adversary gains access to the service center network
(e.g., by compromising an employee laptop), then (1)
compromises any PassThru devices on the network, each
of which compromise any cars they are used to service
(2 and 3), installing Trojan horses to be activated based
on some environmental trigger. The PassThru device also
(4) spreads virally to other PassThru devices (e.g., if a
device is loaned to other shops) which can repeat the same
process (5).

installs a malicious binary (modifying startup scripts so
it is always enabled). The malicious binary will send
pre-programmed messages over the CAN bus whenever
a technician connects the PassThru device to a car. These
CAN packets install malware onto the car’s telematics
unit. This malware waits for an environmental trigger
(e.g., specific date and time) before performing some
action. Figure 2 gives a pictorial overview of this attack.

To summarize, an attacker who can connect to a
dealership’s wireless network (e.g., via social engineering
or a worm/virus à la Stuxnet [7]) is able to subvert any
active PassThru devices that will in turn compromise any
vehicles to which they connect. Moreover, the PassThru
device is sufficiently general to mount the attack itself. To
demonstrate this, we have modified our program, turning
it into a worm that actively seeks out and spreads to other
PassThru devices in range. This attack does not require
interactivity with the attacker and can be fully automated.

4.3 Short-range wireless channels: Bluetooth
We now turn to short-range wireless channels and focus
on one in particular: Bluetooth. Like many modern cars,
ours has built-in Bluetooth capabilities which allow the
occupants’ cell phones to connect to the car (e.g., to
enable hands-free calling). These Bluetooth capabilities
are built into our car’s telematics unit.

Through reverse engineering, we gained access to
the telematics ECU’s Unix-like operating system and
identified the particular program responsible for handling
Bluetooth functionality. By analyzing the program’s
symbols we established that it contains a copy of a
popular embedded implementation of the Bluetooth
protocol stack and a sample hands-free application.
However, the interface to this program and the rest of the
telematics system appear to be custom-built. It is in this
custom interface code that we found evidence of likely



vulnerabilities. Specifically, we observed over 20 calls
to strcpy, none of which were clearly safe. We inves-
tigated the first such instance in depth and discovered an
easily exploitable unchecked strcpy to the stack when
handling a Bluetooth configuration command.9 Thus, any
paired Bluetooth device can exploit this vulnerability to
execute arbitrary code on the telematics unit.

As with our indirect physical channel investigations,
we establish the utility of this vulnerability by making it
concrete. We explore two practical methods for exploiting
this attack and in doing so unearth two sub-classes of the
short-range wireless attack vector: indirect short-range
wireless attacks and direct short-range wireless attacks.
Indirect short-range wireless attacks. The vulnerabil-
ity we identified requires the attacker to have a paired
Bluetooth device. It may be challenging for an attacker to
pair her own device with the car’s Bluetooth system — a
challenge we consider in the direct short-range wireless
attacks discussion below. However, the car’s Bluetooth
subsystem was explicitly designed to support hands-free
calling and thus may naturally be paired with one or
more smartphones. We conjecture that if an attacker can
independently compromise one of those smartphones,
then the attacker can leverage the smartphone as a
stepping-stone for compromising the car’s telematics
unit, and thus all the critical ECUs on the car.

To assess this attack vector we implemented a simple
Trojan Horse application on the HTC Dream (G1) phone
running Android 2.1. The application appears to be in-
nocuous but under the hood monitors for new Bluetooth
connections, checks to see if the other party is a telemat-
ics unit (our unit identifies itself by the car manufacturer
name), and if so sends our attack payload. While we
have not attempted to upload our code to the Android
Market, there is evidence that other Trojan applications
have been successfully uploaded [25]. Additionally, there
are known exploits that can compromise Android and
iPhone devices that visit malicious Web sites. Thus our
assessment suggests that smartphones can be a viable
path for exploiting a car’s short-range wireless Bluetooth
vulnerabilities.
Direct short-range wireless attacks. We next assess
whether an attacker can remotely exploit the Bluetooth
vulnerability without access to a paired device. Our
experimental analyses found that a determined attacker
can do so, albeit in exchange for a significant effort in
development time and an extended period of proximity
to the vehicle.

There are two steps precipitating a successful attack.
First, the attacker must learn the car’s Bluetooth MAC

9Because the size of the available buffer is small, our exploit simply
creates a new shell on the telematics unit from which it downloads and
executes more complex code from the Internet via the unit’s built-in
3G data capabilities.

address. Second, the attacker must surreptitiously pair his
or her own device with the car. Experimentally, we find
that we can use the open source Bluesniff [23] package
and a USRP-based software radio to sniff our car’s Blue-
tooth MAC address when the car is started in the presence
of a previously paired device (e.g., when the driver turns
on the car while carrying her cell phone). We were also
able to discover the car’s Bluetooth MAC address by
sniffing the Bluetooth traffic generated when one of the
devices, which has previously been paired to a car, has its
Bluetooth unit enabled, regardless of the presence of the
car — all of the devices we experimented with scanned
for paired devices upon Bluetooth initialization.

Given the MAC address, the other requirement for
pairing is possessing a shared secret (the PIN). Under
normal use, if the driver wishes to pair a new device, she
puts the car into pairing mode via a well-documented
user interface, and, in turn, the car provides a random PIN
(regenerated each time the car starts or when the driver
initiates the normal pairing mode) which is then shown
on the dashboard and must then be manually entered into
the phone. However, we have discovered that our car’s
Bluetooth unit will respond to pairing requests even with-
out any user interaction. Using a simple laptop to issue
pairing requests, we are thus able to brute force this PIN
at a rate of eight to nine PINs per minute, for an average
of approximately 10 hours per car; this rate is limited
entirely by the response time of the vehicle’s Bluetooth
stack. We conducted three empirical trials against our car
(resetting the car each time to ensure that a new PIN was
generated) and found that we could pair with the car after
approximately 13.5, 12.5, and 0.25 hours, respectively.
The pairing process does not require any driver inter-
vention and will happen completely obliviously to any
person in the car.10 While this attack is time consuming
and requires the car(s) under attack to be running, it is
also parallelizable, e.g., an attacker could sniff the MAC
addresses of all cars started in a parking garage at the
end of a day (assuming the cars are pre-paired with at
least one Bluetooth device). If a thousand such cars leave
the parking garage in a day, then we expect to be able to
brute force the PIN for at least one car within a minute.

After completing this pairing, the attacker can inject on
the paired channel an exploit like the one we developed
and thus compromise the vehicle.

4.4 Long-range wireless channels: Cellular
Finally, we consider long-range wireless channels and,
in particular, focus on the cellular capabilities built into
our car’s telematics unit. Like many modern cars, our
car’s cellular capabilities facilitate a variety of safety

10As an artifact of how this “blind” pairing works, the paired device
does not appear on the driver’s list of paired devices and cannot be
unpaired manually.



and convenience features (e.g., the car can automatically
call for help if it detects a crash). However, long-range
communications channels also offer an obvious target
for potential attackers, which we explore here. In this
section, we describe how these channels operate, how
they were reverse engineered and demonstrate that
a combination of software flaws conspire to allow a
completely remote compromise via the cellular voice
channel. We focus on adversarial actions that leverage
the existing cellular infrastructure, not ones that involve
the use of adversarially-controlled infrastructure; e.g., we
do not consider man-in-the-middle attacks.
Telematics connectivity. For wide-area connectivity,
our telematics unit is equipped with a cell phone interface
(supporting voice, SMS and 3G data). While the unit
uses its 3G data channel for a variety of Internet-based
functions (e.g., navigation and location-based services),
it relies on the voice channel for critical telematics
functions (e.g., crash notification) because this medium
can provide connectivity over the widest possible service
area (i.e., including areas where 3G service is not
yet available). To synthesize a digital channel in this
environment, the manufacturer uses Airbiquity’s aqLink
software modem to covert between analog waveforms and
digital bits. This use of the voice channel in general, and
the aqLink software in particular, is common to virtually
all popular North American telematics offerings today.

In our vehicle, Airbiquity’s software is used to create a
reliable data connection between the car’s telematics unit
and a remote Telematics Call Center (TCC) operated by
the manufacturer. In particular, the telematics unit incor-
porates the aqLink code in its Gateway program which
controls both voice and data cellular communication.
Since a single cellular channel is used for both voice and
data, a simple, in-band, tone-based signaling protocol is
used to switch the call into data mode. The in-cabin audio
is muted when data is transmitted, although a tell-tale
light and audio announcement is used to indicate that a
call is in progress. For pure data calls (e.g., telemetry and
remote diagnostics), the unit employs a so-called “stealth”
mode which does not provide any indication that a call
is in progress.
Reverse engineering the aqLink protocol. Reverse
engineering the aqLink protocol was among the most
demanding parts of our effort, in particular because it
demanded signal processing skills not part of the typical
reverse engineering repertoire. For pedagogical reasons,
we briefly highlight the process of our investigation.

We first identified an in-band tone used to initiate “data
mode.” Having switched to data mode, aqLink provides
a proprietary modulation scheme for encoding bits. By
calling our car’s telematics unit (the phone number is
available via caller ID), initiating data mode with a tone
generator and recording the audio signal that resulted,

we established that the center frequency was roughly
700 Hz and that the signal was consistent with a 400 bps
frequency-shift keying (FSK) signal.

We then used LD_PRELOAD on the telematics unit
to interpose on the raw audio samples as they left the
software modem. Using this improved signal source, we
hunted for known values contained in the signal (e.g.,
unique identifiers stamped on the unit). We did so by en-
coding these values as binary waveforms at hypothesized
bitrates and cross-correlating them to the demodulated sig-
nal until we were able to establish the correct parameters
for demodulating digital bits from the raw analog signal.

From individual bits, we then focused on packet
structure. We were lucky to discover a debugging flag in
the telematics software that would produce a binary log
of all packet payloads transmitted or received, providing
ground truth. Comparing this with the bitstream data,
we discovered the details of the framing protocol (e.g.,
the use of half-width bits in the synchronization header)
and were able to infer that data is sent in packets of up
to 1024-bytes, divided into 22-byte frames which are
divided into two 11-byte segments. We inferred that a
CRC and ECC were both used to tolerate noise. Search-
ing the disassembled code for known CRC constants
quickly led us to determine the correct CRC to use, and
the ECC code was identified in a similar fashion. For
reverse-engineering the header contents, we interposed
on the aqSend call (used to transmit messages), which
allowed us to send arbitrary multi-frame packets and
consequently infer the sequence number, multi-frame
identifier, start of packet bit, ACK frame structure, etc.
We omit the many other details due to space constraints.

Given our derived protocol specification, we then
implemented an aqLink-compatible software modem in C
using a laptop with an Intel ICH3-based modem exposed
as an ALSA sound device under Linux. We verified the
modulation and formatting of our packet stream using
the debugging log described earlier.

Finally, layered on top of the aqLink modem is the
telematics unit’s own proprietary command protocol that
allows the TCC to retrieve information about the state of
the car as well as to remotely actuate car functions. Once
the Gateway program decodes a frame and identifies it as
a command message, the data is then passed (via an RPC-
like protocol) to another telematics unit program which
is responsible for supervising overall telematics activities
and implementing the command protocol (henceforth,
the Command program). We reverse-engineered enough
of the Gateway and Command programs to identify a
candidate vulnerability, which we describe below.
Vulnerabilities in the Gateway. As mentioned earlier,
the aqLink code explicitly supports packet sizes up to
1024 bytes. However, the custom code that glues aqLink
to the Command program assumes that packets will never



exceed 100 bytes or so (presumably since well-formatted
command messages are always smaller). This leads to
another stack-based buffer overflow vulnerability that we
verified is exploitable. Interestingly, because this attack
takes place at the lowest level of the protocol stack, it com-
pletely bypasses the higher-level authentication checks
implemented by the Command program (since these
checks themselves depend on being able to send packets).

There is one key gap preventing this exploit from
working in practice. Namely, the buffer overflow we
chose to focus on requires sending over 300 bytes to
the Gateway program. Since the aqLink protocol has
a maximum effective throughput of about 21 bytes a
second, in the best case, the attack requires about 14
seconds to transmit. However, upon receiving a call, the
Command program sends the caller an authentication
request and, serendipitously, it requires a response within
12 seconds or the connection is effectively terminated.
Thus, we simply cannot send data fast enough over an
unauthenticated link to overflow the vulnerable buffer.

While we identified other candidate buffer overflows
of slightly shorter length, we decided instead to focus on
the authentication problem directly.
Vulnerabilities in authentication. When a call is placed
to the car and data mode is initiated, the first command
message sent by the vehicle is a random, three byte au-
thentication challenge packet and the Command program
authentication timer is started. In normal operation, the
TCC hashes the challenge along with a 64-bit pre-shared
key to generate a response to the challenge. When
waiting for an authentication response, the Command
program will not “accept” any other packet (this does
not prevent our buffer overflow, but does prevent sending
other command messages). If an incorrect authentication
response is received, or a response is not received within
the prescribed time limit, the Command program will
send an error packet. When this packet is acknowledged,
the unit hangs up (and it is not possible to send any
additional data until the error packet is acknowledged).

After several failed attempts to derive the shared
key, we examined code that generates authentication
challenges and evaluates responses. Both contained errors
that together were sufficient to construct a vulnerability.

First, we noted that the “random” challenge implemen-
tation is flawed. In most situations, this nonce is static and
identical on the two cars we tested. The key flaw is that
the random number generator is re-initialized whenever
the telematics unit starts — such as when a call comes
in after the car has been off — and it is seeded each time
with the same constant. Therefore, multiple calls to a car
while it is off result in the same expected response. Con-
sequently, an attacker able to observe a response packet
(e.g., via sniffing the cellular link during a TCC-initiated
call) will be able to replay that response in the future.

The code parsing authentication responses has an even
more egregious bug that permits circumvention without
observing a correct response. In particular, there is a flaw
such that for certain challenges (roughly one out of every
256), carefully formatted but incorrect responses will be
interpreted as valid. If the random number generation is
not re-initialized (e.g., if the car is on when repeatedly
called) then the challenge will change each time and 1
out of 256 trials will have the desired structure. Thus,
after an average of 128 calls the authentication test can be
bypassed, and we are able to transmit the exploit (again,
without any indication to the driver). This attack is more
challenging to accomplish when the car is turned off
because the telematics unit can shut down when a call
ends (hence re-initializing the random number generator)
before a second call can reach it.

To summarize, we identified several vulnerabilities in
how our telematics unit uses the aqLink code that, to-
gether, allow a remote exploit. Specifically, there is a
discrepancy between the set of packet sizes supported by
the aqLink software and the buffer allocated by the telem-
atics client code. However, to exploit this vulnerability
requires first authenticating in order to set the call timeout
value long enough to deliver a sufficiently long payload.
This is possible due to a logic flaw in the unit’s authenti-
cation system that allows an attacker to blindly satisfy the
authentication challenge after approximately 128 calls.
Concrete realization. We demonstrate and evaluate
our attack in two concrete forms. First, we implemented
an end-to-end attack in which a laptop running our
custom aqLink-compatible software modem calls our
car repeatedly until it authenticates, changes the timeout
from 12 seconds to 60 seconds, and then re-calls our
car and exploits the buffer overflow vulnerability we
uncovered. The exploit then forces the telematics unit
to download and execute additional payload code from
the Internet using the IP-addressable 3G data capability.

We also found that the entire attack can be imple-
mented in a completely blind fashion — without any
capacity to listen to the car’s responses. Demonstrating
this, we encoded an audio file with the modulated
post-authentication exploit payload and loaded that file
onto an iPod. By manually dialing our car on an office
phone and then playing this “song” into the phone’s
microphone, we are able to achieve the same results and
compromise the car.

5 Remote Exploit Control
Thus far we have described the external attack surface
of an automobile and demonstrated the presence of
vulnerabilities in a range of different external channels.
An adversary could use such means to compromise
a vehicle’s systems and install code that takes action
immediately (e.g., unlocking doors) or in response to



some environmental trigger (e.g., the time of day, speed,
or location as exported via the onboard GPS).

However, the presence of wireless channels in the
modern vehicle qualitatively changes the range of options
available to the adversary, allowing actions to be remotely
triggered on demand, synchronized across multiple
vehicles, or interactively controlled. Further, two-way
channels permit both remote monitoring and data exfil-
tration. In this section, we broadly evaluate the potential
for such post-compromise control, characterize these
capabilities, and evaluate the capabilities via prototype
implementations for TPMS, Bluetooth, FM RDS and Cel-
lular channels. Our prototype attack code is delivered by
exploiting one of the previously described vulnerabilities
(indeed, any exploit would work). Table 2 summarizes
these results, again with our assessment of the effort
required to discover and implement the capability.
TPMS. We constructed two versions of a TPMS-based
triggering channel. One installs code on another ECU
(the telematics ECU in our case, although any ECU would
do) that monitors tire pressure signals as the TPMS ECU
broadcasts them over the CAN bus. The presence of a
particular tire pressure reading then triggers the payload;
the trigger tire pressure value is not expected to be found
in the wild but must instead be adversarially transmitted
over the air. For our second example, the attack reflashes
the TPMS ECU via CAN and installs code onto it that will
detect specific wireless trigger packets and, if detected,
will send pre-programmed CAN packets directly over the
car’s internal network. Both attacks required a custom
TPMS packet generator (described below). The latter
attack also required significant reverse engineering efforts
(e.g., we had to write a custom IDA Pro module for
disassembling the firmware, and we were highly memory
constrained, so that the resulting attack firmware —
hand-written object code — needed to re-use code space
originally allocated for CRC verification, the removal of
which did not impair the normal TPMS functionality).

To experimentally verify these triggers, we reverse-
engineered the 315 MHz TPMS modulation and framing
protocol (far simpler than the aqLink modem) and then im-
plemented a USRP software radio module that generates
the appropriate wireless signals to activate the triggers.
Bluetooth. We modified the Bluetooth exploit code on
the telematics ECU to pair, post compromise, with a
special MAC address used by the adversary and accept
her commands (either triggering existing functionality
or receiving new functionality). We did not explore
exfiltrating data via the two-way Bluetooth channel, but
we see no reason why it would not be possible.
FM RDS. Using the CD-based firmware update attack
we developed earlier, we reflashed the media player ECU
to send a pre-determined set of CAN packets (our pay-
load) when a particular “Program Service Name” message

arrives over the FM RDS channel. We experimentally
verified this with a low-power FM transmitter driven by
a Pira32 RDS encoder; an attacker could communicate
over much longer ranges using higher power. Table 2 lists
the cost for this attack as medium given the complexity
of programming/debugging in the media player execution
environment (we bricked numerous CD players before
finalizing our implementation and testing on our car).
Cellular. We modified our telematics exploit payload
to download and run a small (400 lines of C code) IRC
client post-compromise. The IRC client uses the vehicle’s
high bandwidth 3G data channel to connect to an IRC
server of our choosing, self-identifies, and then listens
for commands. Subsequently, any commands sent to this
IRC server (from any Internet connected host) are in turn
transmitted to the vehicle, parsed by the IRC client, and
then transmitted as CAN packets over the appropriate
bus. We further provided functionality to use this channel
in both a broadcast mode (where all vehicles subscribed
to the channel respond to the commands) or selectively
(where commands are only accepted by the particular
vehicle specified in the command). For the former, we
experimentally verified this by compromising two cars
(located over 1,000 miles apart), having them both join
the IRC channel, and then both simultaneously respond
to a single command (for safety, the command we sent
simply made the audio systems on both cars chime).
Finally, the high-bandwidth nature (up to 1 Mbps at
times) of this channel makes it easy to exfiltrate data. (No
special software is needed since ftp is provided on the
host platform.) To make this concrete we modified our
attack code for two demonstrations: one that periodically
“tweets” the GPS location of our vehicle and another that
records cabin audio conversations and sends the recorded
data to our servers over the Internet.

6 Threat Assessment
Thus far we have considered threats primarily at a
technical level. Previously, we have shown that gaining
access to a car’s internal network provides sufficient
means for compromising all of its systems (including
lights, brakes, and engine) [14]. In this paper, we have
further demonstrated that an adversary has a practical
opportunity to effect this compromise (i.e., via a range
of external communications channels) without having
physical access to the vehicle. However, real threats
ultimately have some motive as well: a more concrete
goal that is achieved by exploiting the capability to attack.

This leaves unanswered the crucial question: Just how
serious are the threats? Obviously, there are no clear
ways to predict such things, especially in the absence
of any known attacks in the wild. However, we can
reason about how the capabilities we have identified
can be combined in service to known goals. While one



Channel Range Implemented Control / Trigger Exfiltration Cost

TPMS (tire pressure) Short Predefined tire pressure sequences causes telematics unit to send CAN
packets

No Low-Medium

TPMS (tire pressure) Short TPMS trigger causes TPMS receiver to send CAN packets No Medium
Bluetooth Short Presence of trigger MAC addresses allows remote control Yes∗ Low
FM radio (RDS channel) Long FM RDS trigger causes radio to send CAN packets No Medium
Cellular Global IRC command-and-control (botnet) channel allows broadcast and

single-vehicle control
Yes Low

Table 2: Implemented control and trigger channels. The Cost column captures the approximate effort to develop this
post-compromise control capability. The Exfiltration column indicates whether this channel can also be used to exfiltrate
data. For (∗), we did not experimentally verify data exfiltration over Bluetooth.

can easily envision hypothetical “cyber war” or terrorist
scenarios (e.g., infect large numbers of cars en masse
via war dialing or a popular audio file and then, later,
trigger them to simultaneously disengage the brakes
when driving at high speed), our lack of experience with
such concerns means such threats are highly speculative.

Instead, to gauge whether these threats create practical
risks, we consider (briefly) how the raw capabilities we
have identified might affect two scenarios closer to our
experience: financially motivated theft and third-party
surveillance.
Theft. Using any of our implemented exploit capabilities
(CD, PassThru, Bluetooth, and cellular), it is simple
to command a car to unlock its doors on demand, thus
enabling theft. However, a more visionary car thief
might realize that blind, remote compromise can be used
to change both scale and, ultimately, business model.
For example, instead of attacking a particular target
car, the thief might instead try to compromise as many
cars as possible (e.g., by war dialing). As part of this
compromise, he might command each car to contact a
central server and report back its GPS coordinates and
Vehicle Identification Number (VIN). The IRC network
described in Section 5 provides just this capability. The
VIN in turn encodes the year, make and model of each car
and hence its value. Putting these capabilities together,
a car thief could “sift” through the set of cars, identify
the valuable ones, find their location (and perhaps how
long they have been parked) and, upon visiting a target
of interest then issue commands to unlock the doors and
so on. An enterprising thief might stop stealing cars
himself, and instead sell his capabilities as a “service”
to other thieves (“I’m looking for late model BMWs or
Audis within a half mile of 4th and Broadway. Do you
have anything for me?”) Careful readers may notice
that this progression mirrors the evolution of desktop
computer compromises: from individual attacks, to mass
exploitation via worms and viruses, to third-party markets
selling compromised hosts as a service.

While the scenario itself is today hypothetical, we have
evaluated a complete attack whereby a thief remotely
disables a car’s security measures, allowing a unskilled
accomplice to enter the car and drive it away. Our attack

directs the car’s compromised telematics unit to unlock
the doors, start the engine, disengage the shift lock
solenoid (which normally prevents the car from shifting
out of park without the key present), and spoof packets
used in the car’s startup protocol (thereby bypassing the
existing immobilizer anti-theft measures11). We have
implemented this attack on our car. In our experiments
the accomplice only drove the “stolen” car forward and
backward because we did not want to break the steering
column lock, though numerous online videos demonstrate
how to do so using a screwdriver. (Other vehicles have
the steering column lock under computer control.)
Surveillance. We have found that an attacker who has
compromised our car’s telematics unit can record data
from the in-cabin microphone (normally reserved for
hands-free calling) and exfiltrate that data over the con-
nected IRC channel. Moreover, as said before, it is easy
to capture the location of the car at all times and hence
track where the driver goes. These capabilities, which
we have experimentally evaluated, could prove useful
to private investigators, corporate spies, paparazzi, and
others seeking to eavesdrop on the private conversations
within particular vehicles. Moreover, if the target vehicle
is not known, the mass compromise techniques described
in the theft scenario can also be brought to bear on this
problem. For example, someone wishing to eavesdrop
on Google executives might filter a set of compromised
cars down to those that are both expensive and located in
the Google parking lot at 10 a.m. The location of those
same cars at 7 p.m. is likely to be the driver’s residence,
allowing the attacker to identify the driver (e.g., via com-
mercial credit records). We suspect that one could identify
promising targets for eavesdropping quite quickly in this
manner.

7 Discussion and Synthesis
Our research provides us with new insights into the
risks with modern automotive computing systems. We
begin here with a discussion of concrete directions for
increasing security. We then turn to our now broadly

11Past work on bypassing immobilizers required prior direct or in-
direct access to the car’s keys, e.g., Bono et al. [2] and Francillon
et al. [9].



informed reflections on why vulnerabilities exist today
and the challenges in mitigating them.

7.1 Implementation fixes
Our concrete, near-term recommendations fall into two
familiar categories: restrict access and improve code ro-
bustness. Given the high interconnectedness of car ECUs
necessary for desired functionality, the solution is not to
simply remove or harden individual components (e.g., the
telematics unit) or create physically isolated subnetworks.

We were surprised at the extent to which the car’s
externally facing interfaces were open to unsolicited
communications — thereby broadening the attack surface
significantly. Indeed, very simple actions, such as not
allowing Bluetooth pairing attempts without the driver’s
first manually placing the vehicle in pairing mode, would
have undermined our ability to exploit the vulnerability
in the underlying Bluetooth code. Similarly, we believe
the cellular interface could be significantly hardened by
using inbound calls only to “wake up” the car (i.e., never
for data transfer) and having the car itself periodically
dial out for requests while it is active. Finally, use of
application-level authentication and encryption (e.g.,
via OpenSSL) in the PassThru device’s proprietary
configuration protocol would have prevented its code
from being exploited as well.

However, rather than assume the attack surface will
not be breached, the underlying code platform should
be hardened as well. These include standard security
engineering best-practices, such as not using unsafe
functions like strcpy, diligent input validation, and
checking function “contracts” at module boundaries. As
an additional measure of protection against less-motivated
adversaries, we recommend removing all debugging
symbols and error strings from deployed ECU code.

We also encourage the use of simple anti-exploitation
mitigations such as stack cookies and ASLR that can
be easily implemented even for simple processors and
can significantly increase the exploit burden for poten-
tial attackers. In the same vein, critical communications
channels (e.g., Bluetooth and telematics) should have
some amount of behavioral monitoring. The car should
not allow arbitrary numbers of connection failures to go
unanswered nor should outbound Internet connections to
arbitrary destinations be allowed. In cases where ECUs
communicate on multiple buses, they should only be al-
lowed to be reflashed from the bus with the smallest ex-
ternal attack surface. This does not stop all attacks where
one compromised ECU affects an ECU on a bus with
a smaller attack surface, but it does make such attacks
more difficult. Finally, a number of the exploits we de-
veloped were also facilitated by the services included in
several units. For example, we made extensive use of
telnetd, ftp, and vi, which were installed on the

PassThru and telematics devices. There is no reason for
these extraneous binaries to exist in shipping ECUs, and
they should be removed before deployment, as they make
it easier to exploit additional connectivity to the plat-
form.

Finally, secure (authenticated and reliable) software
updates must also be considered as part of automotive
component design.

7.2 Vulnerability drivers
While the recommendations in Section 7.1 can signifi-
cantly increase the security of modern cars against exter-
nal attacks and post-compromise control, none of these
ideas are new or innovative. Thus, perhaps the more inter-
esting question is why they have not been applied in the
automotive environment already. Our findings and subse-
quent interactions with the automotive industry have given
us a unique vantage point for answering this question.

One clear reason is that automobiles have not yet been
subjected to significant adversarial pressures. Tradition-
ally automobiles have not been network-connected and
thus manufacturers have not had to anticipate the actions
of an external adversary; anyone who could get close
enough to a car to modify its systems was also close
enough to do significant damage through physical means.
Our automotive systems now have broad connectivity;
millions of cars on the road today can be directly
addressed via cellular phones and via the Internet.

This is similar to the evolution of desktop personal
computer security during the early 1990s. In the same
way that connecting PCs to the Internet exposed extant
vulnerabilities that previously could not conveniently be
exploited, so too does increasing the connectivity of auto-
motive systems. This analogy suggests that, even though
automotive attacks do not take place today, there is cause
to take their potential seriously. Indeed, much of our work
is motivated by a desire that the automotive manufacturers
should not repeat the mistakes of the PC industry — wait-
ing for high profile attacks before making security a top
priority [18, 19]. We believe many of the lessons learned
in hardening desktop systems (such as those suggested ear-
lier) can be quickly re-purposed for the embedded context.

However, our experimental vulnerability analyses also
uncover an ecosystem for which high levels of assurance
may be fundamentally challenging. Reflecting upon
our discovered vulnerabilities, we noticed interesting
similarities in where they occur. In particular, virtually
all vulnerabilities emerged at the interface boundaries
between code written by distinct organizations.

Consider for example the Airbiquity software modem,
which appears to have been delivered as a completed
component. We found vulnerabilities not in the software
modem itself but rather in the “glue” code calling it
and binding it to other telematics functions. It was here



that the caller did not appear to fully understand the
assumptions made by the component being called.

We find this pattern repeatedly. The Bluetooth vulner-
ability arose from a similar misunderstanding between
the callers of the Bluetooth protocol stack library and its
implementers (again in glue code). The PassThru vulnera-
bility arose in script-based glue code that tried to interface
a proprietary configuration protocol with standard Linux
configuration scripts. Even the media player firmware
update vulnerability appears to have arisen because the
manufacturer was unaware of the vestigial CD-based
reflashing capability implemented in the code base.

While interface boundary problems are common in
all kinds of software, we believe there are structural rea-
sons that make them particularly likely in the automo-
tive industry. In particular, the automotive industry has
adopted an outsourcing approach to software that is quite
similar to that used for mechanical components: supply
a specification and contract for completed parts. Thus,
for many components the manufacturer does not do the
software development and is only responsible for integra-
tion. We have found, for example, that different model
years of ECUs with effectively the same functionality
used completely different source code bases because they
were provided by different suppliers. Indeed, we have
come to understand that frequently manufacturers do not
have access to the source code for the ECUs they con-
tract for (and suppliers are hesitant to provide such code
since this represents their key intellectual property ad-
vantage over the manufacturer). Thus, while each sup-
plier does unit testing (according to the specification)
it is difficult for the manufacturer to evaluate security
vulnerabilities that emerge at the integration stage. Tra-
ditional kinds of automated analysis and code reviews
cannot be applied and assumptions not embodied in the
specifications are difficult to unravel. Therefore, while
this outsourcing process might have been appropriate for
purely mechanical systems, it is no longer appropriate for
digital systems that have the potential for remote compro-
mise.

Developing security solutions compatible with the
automotive ecosystem is challenging and we believe
it will require more engagement between the computer
security community and automotive manufacturers (in
the same way that our community engages directly with
the makers of PC software today).

8 Conclusions
A modern automobile is controlled by tens of distinct
computers physically interconnected with each other via
internal (wired) buses and thus exposed to one another.
A non-trivial number of these components are also exter-
nally accessible via a variety of I/O interfaces. Previous
research showed that an adversary can seriously impact

the safety of a vehicle if he or she is capable of sending
packets on the car’s internal wired network [14], and
numerous other papers have discussed potential security
risks with future (wired and wireless) automobiles in
the abstract or on the bench [10, 15, 24, 26, 27, 28].
To the best of our knowledge, however, we are the
first to experimentally and systematically study the
externally-facing attack surface of a car.

Our experimental analyses focus on a representative,
moderately priced sedan. We iteratively refined an auto-
motive threat model framework and implemented com-
plete, end-to-end attacks along key points of this frame-
work. For example, we can compromise the car’s ra-
dio and upload custom firmware via a doctored CD, we
can compromise the technicians’ PassThru devices and
thereby compromise any car subsequently connected to
the PassThru device, and we can call our car’s cellular
phone number to obtain full control over the car’s telem-
atics unit over an arbitrary distance. Being able to com-
promise a car’s ECU is, however, only half the story: The
remaining concern is what an attacker is able to do with
those capabilities. In fact, we show that a car’s externally-
facing I/O interfaces can be used post-compromise to
remotely trigger or control arbitrary vehicular functions
at a distance and to exfiltrate data such as vehicle lo-
cation and cabin audio. Finally, we consider concrete,
financially-motivated scenarios under which an attacker
might leverage the capabilities we develop in this pa-
per.

Our experimental results give us the unique oppor-
tunity to reflect on the security and privacy risks with
modern automobiles. We synthesize concrete, pragmatic
recommendations for future automotive security, as well
as identify fundamental challenges. We disclosed our
results to relevant industry and government stakeholders.
While defending against known vulnerabilities does not
imply the non-existence of other vulnerabilities, many
of the specific vulnerabilities identified in this paper have
or will soon be addressed.
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